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1.1 � CONDITION MONITORING (CM)

The condition monitoring (CM) strategy can detect various defects affecting 
the performance of hydraulic machines. CM aims to provide early warnings 
of potential equipment failures to facilitate timely diagnosis and repair [1–3]. 
Monitoring various machine parameters (vibration, acoustics, temperature, oil 
condition, electrical parameters, corrosion, etc.) helps assess its overall health 
[4]. Additionally, models can be established using different condition-monitor-
ing techniques to simulate and predict the change in the behavior of parameters 
[5]. Prior knowledge of these measurement parameters helps the maintenance 
engineer to improve the performance of the machine. CM offers the following 
advantages:

	 1.	 Unexpected catastrophic breakdowns can be avoided, which may have 
expensive or dangerous consequences.

	 2.	 Production time/available time to a machine is increased which ultimately 
cuts the maintenance cost.

	 3.	 Unnecessary intervention in the functioning of a healthy machine can be 
eliminated.

	 4.	 It reduced the consumption of extra power by correcting the fault in time.

In condition-based maintenance, the data gathered from the monitored machine 
is collected, processed, and analyzed to assess its health condition. Based on the 
analysis done, a replacement or repair decision is taken. Improvements in sensors, 
data collection, signal processing, and appropriate software make this approach 
more effective. That’s why the CM system is capable enough to predict accurate 
and precise information about the machine’s health condition even in the presence 
of environmental noise, electrical interference, severe deterioration, faults, etc. The 
type of defect, its severity, and the location of such defect within the machine 
can easily be identified. The CM system can also predict the approximate remain-
ing useful life of the machine. The CM techniques are categorized in the follow-
ing ways:

1.1.1 � Vibration-Based Condition Monitoring

Vibration-based CM employs noninvasive sensors and data capture to evaluate 
machine performance in both time and frequency domains. Variations in these 
attributes indicate possible damage or deterioration [6].

Introduction1
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Defects can be of different types such as misalignment, unbalance, mechanical 
looseness, spall, and pitting. Analysis of the signal warns the maintenance depart-
ment about possible failures and measures to control the operating process param-
eters of the system. The vibration-based CM uses the concept that the damage in 
the system alters the system’s mass, stiffness, and dissipation properties, resulting 
in a change in the system’s dynamic response. However, it has a limitation that 
sometimes local damages may not affect the low-frequency responses making 
diagnosis difficult [7].

1.1.2 � Visual Inspection

Visual inspection, using human senses (sight, hearing, touch, smell) or sim-
ple tools, provides a flexible and readily accessible way to assess a system’s 
condition [8, 9].

1.1.3 �T emperature Monitoring

Defects in machine components result in an increase in friction which produces 
heat. In temperature monitoring, tracking the temperature of the lubricant or hous-
ing of different components is considered.

1.1.4 �A coustic-Based Condition Monitoring

Acoustic-based CM is a form of nondestructive testing that examines the acous-
tic or noise waveforms produced by machinery. The sound produced by machin-
ery components is acquired by the microphone to predict its health condition. 
Generally, microphones can be easily installed compared to sensors and have a 
high-frequency response range [10, 11].

1.1.5 �A coustic Emission in Condition Monitoring

In acoustic emissions, a strain energy release occurs rapidly, creating an elas-
tic wave when there is deformation or damage on the surface of the machinery 
component. There are different acoustic emission sources in rotating machinery 
such as friction, turbulence, defects, cavitation, and fatigue. The most common 
parameters which help in acoustic emission CM are root mean square, energy, 
and Kurtosis [12].

1.1.6 �O il Based Condition Monitoring

In oil-based CM, rough working conditions lead to changes in physicochemical 
properties, which help determine the health status of the machinery. The slow 
degradation process of rotating machinery can also be monitored by oil analysis. 
In oil-based CM, the actual degree of degradation is difficult to evaluate [13].
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1.2 � IMPORTANCE OF OPERATING FREQUENCY 
IN DEFECT IDENTIFICATION

Hydraulic flow-induced rotary systems are prone to different defects such as a 
broken impeller or bucket, clogging, added mass, cavitation, misalignment in the 
shaft, and bearing defects. Such defects show its characteristic signature related 
to shaft speed [14, 15]. For instance, the imbalance in the hydraulic system such 
as a Pelton wheel and centrifugal pump causes the rotor to vibrate at shaft fre-
quency [16]. Similarly, misalignment defects raise the frequency sometimes 
equal to shaft frequency and sometimes more than that depending on the type of 
misalignment [17, 18].

1.3 � HYDRAULIC FLOW-INDUCED ROTARY SYSTEM

A fluid energy system generally converts one form of energy into another. On the 
basis of the direction of conversion of energy, fluid machines are further classi-
fied. Devices that transform stored energy (such as kinetic, potential, and inter-
molecular energy) into mechanical work are referred to as turbines. In contrast, 
devices that use the mechanical energy from moving components to enhance the 
stored energy of a fluid are called pumps, blowers, and fans. Pelton turbine is gen-
erally used in utilizing high-head energy applications. The buckets are attached to 
the rotor that is in the form of a circular disk and are driven by the perpendicular 
jet delivered through one or more jets (Figure 1.1).

Francis turbines are reaction turbines, unlike Pelton turbines. A key difference 
is that pressure drop in a Francis turbine occurs both before and within the runner, 
due to its diverging flow path, whereas in a Pelton turbine, the entire pressure drop 
happens within the runner. Also, a Pelton turbine’s buckets interact with the water 
jet individually, while a Francis turbine’s runner is fully submerged (Figure 1.2).

FIGURE 1.1  Pelton turbine.



4� Data-Driven Fault Diagnosis

Centrifugal pumps convert rotational energy (from a motor or engine) into 
fluid flow energy. As a type of turbomachinery, they accelerate fluid entering near 
their axis outward through an impeller into a diffuser or volute casing, increasing 
the fluid’s pressure and velocity (Figure 1.3).

1.4 � POTENTIAL FAULTS IN A HYDRAULIC FLOW-INDUCED  
ROTARY SYSTEM

Different hydraulic flow-induced systems such as the Pelton turbine, Francis tur-
bine, and Centrifugal pumps comprise many components such as buckets, shafts, 

FIGURE 1.2  Francis turbine.

FIGURE 1.3  Centrifugal pump.
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rotor, nozzle, impeller, and bearing. Defects in these components could be broken 
impeller or bucket, clogging, added mass (scales), cavitation, misalignment in the 
shaft, and bearing defects. Some of the common defects are as follows.

Bucket defects: In Pelton turbines, the buckets are prone to damage, such as 
wavy erosion of the splitter. This erosion transforms the initially sharp splitter edge 
into a flattened, wavy surface curving inwards toward the runner’s axis [20]. The 
wavy erosion pattern results from uneven wear along the splitter’s length. Another 
type of erosion, ripple erosion, creates wave-like deformations across the bucket’s 
curved surface, following the flow direction [21]. These ripples form from sedi-
ment particles sliding and scratching the bucket surface due to high acceleration in 
areas of low curvature. “Bulging erosion” describes a slight thinning and outward 
bulging of the flat area between the splitter and curved bucket surface [22]. 
Sediment scratching and sliding cause the bulging lines. In multi-jet Pelton tur-
bines, combined cavitation and erosion near the bucket inlet and root, along with 
surface irregularities, generate secondary flows and splashing, leading to pitting. A 
polished surface with a metallic sheen can form around the runner due to the impact 
of small water droplets [23, 24]. Small sediment particles trapped in water droplets 
create an abrasive environment within the runner. Hydro-abrasive erosion of coated 
buckets depends on the coating’s bond strength, properties, and application method. 
Hard coatings, being brittle, erode primarily on the splitter and cutout areas, with 
less erosion in the curved zone. Seal defect: The seal consists of two components: 
the inner diameter of the rotating seal element and the outer diameter of the station-
ary seal seat. Pump seals may experience failure or leakage due to extended peri-
ods of dry running, inappropriate lubrication (such as using heavy oil), excessive 
installation pressure, or damage incurred during the installation process. Bearing 
fault: The bearings are an integral part of the hydraulic machinery, which consists 
of different components such as inner race, outer race, and ball that are prone to 
defects. The bearing faces different defects such as brinelling, contamination, fret-
ting, peeling and spalling etc. Brinelling refers to tiny localized indentation into the 
bearing race. Unlike brinelling, the small indentations (in the form of scratches, 
pitting, and scoring) are scattered on the bearing surface in case of contamination 
caused due to foreign fine particles, which are introduced through a defective bear-
ing seal/lubricant. Fretting represents a flaw that arises from excessive friction 
between the inner race and the shaft. Peeling refers to a minor removal of the bear-
ing surface typically less than 0.025 mm deep, primarily resulting from inadequate 
lubrication. Spalling occurs under metal fatigue and is an advanced stage of bear-
ing defect. In this, a microscopic crack under the bearing surface makes its way to 
come to the surface, resulting in the flaking away of metal particles. Impeller 
defect/Runner defects: The impeller or runner of the centrifugal pump or Francis 
turbine is also subjected to the high impact of water and silt and corrosive material 
coming along with water. A clogged impeller occurs when silt or other particles 
block the impeller and get stuck together to the blade. Blade and Wheel cut occurs 
due to the erosive or abrasive action of the particles that are dissolved in the water 
or due to the corrosive or chemical action of the particles coming along with the 
water. Cavitation occurs when liquid pressure drops below its vapor pressure, cre-
ating vapor-filled cavities (bubbles) that collapse violently, generating damaging 



6� Data-Driven Fault Diagnosis

shock waves. A “missing blade” defect, caused by fatigue or metallurgical issues, 
involves a blade detaching from the impeller.

1.5 � VIBRATION SIGNATURE OF FAULTS

Vibration signals contain a vast amount of data that can be categorized into vari-
ous frequency ranges.

	 a.	 High-frequency zone:
Surface roughness and corrosion on components (impeller, rotor, buckets, 
bearings) within the hydraulic rotary system cause high-frequency peaks in 
vibration spectra. These peaks reflect the increased stress and wear from the 
relative motion and contact between these components.

	 b.	 Natural frequency and defect frequency zones:
There are impact events when one component makes relative movement 
with the defective areas that excite at its natural frequencies. In this sce-
nario, the signal from defective machine element(s) has two components. 
The initial part of the signal is generated when one of the machine compo-
nents interacts with the defective element, which is a low-frequency area 
that produces an amplitude peak within the fault frequency range. When 
any component strikes the trailing edge of the defective element, it results 
in an amplitude peak within the natural frequency range [25, 26]. The defect 
frequency generally depends on the defective elements.

	 c.	 Rotating frequency zone:
Issues in machinery such as imbalance, bent shafts, misalignment, and loose-
ness produce specific vibration patterns at the rotational speed and its multiples. 
These faults change the characteristics of contact and the distribution of load.

1.6 � VIBRATION AND SIGNAL PROCESSING TECHNIQUES

Vibration waveform analysis is divided into three primary domains: time domain, 
frequency domain, and time-frequency domain techniques, as illustrated in 
Figure 1.4. The signals are analyzed within these three domains, and significant 
features are subsequently extracted for further examination.

FIGURE 1.4  Vibration monitoring techniques.
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1.6.1 �T ime-Domain Techniques

The time-domain analysis techniques in vibration signal processing are one of 
the simplest approaches that help in extracting the hidden information or features 
sensitive to defects. In this analysis, a series of digital waveforms are obtained that 
represent displacement, velocity, and acceleration.

1.6.2 � Frequency-Domain Techniques

Frequency-domain analysis transforms digital waveforms to reveal their fre-
quency components. This allows for easier identification and isolation of spe-
cific frequencies, a key advantage over time-domain analysis. The Fast Fourier 
Transform (FFT) is the most common method used.

1.6.3 �T ime–Frequency Domain Techniques

Frequency-domain analysis does not provide the same level of time resolution as 
time-domain analysis, resulting in a loss of time related information. Time-frequency 
analysis methods address this issue by examining signals in both time and fre-
quency domains, making them well-suited for nonstationary signals. Some exam-
ples of these techniques are Short Time Fourier Transform (STFT), Wigner-Ville 
Distribution (WVD), Wavelet Transform (WT), Empirical Mode Decomposition 
(EMD), and Ensemble Empirical Mode Decomposition (EEMD) [27–31].

1.7 � SIGNIFICANCE OF WORK

The harsh and complex operating conditions and different unpredictable operat-
ing factors affect the performance of the hydraulic flow-induced rotary systems 
and can result in various defects. These defects lead to severe damage in hydrau-
lic flow machines and sometimes result in the shutdown of the whole plant. The 
sudden failure of different components not only results in an economic loss but is 
also a threat to life. Preventative and planned maintenance are part of the machine 
maintenance strategy, which is based on a set time interval and historical data-
base. However, these strategies are ineffective because set maintenance operations 
either result in over or under-maintenance [32]. The CM approach used in this 
thesis not only detect different faults but also help in estimating the magnitude 
and severity of the defects, which can help maintenance personnel to determine 
when to shut down for replacement or maintenance. The entire procedure can be 
completed online without the need for any manual intervention or support.

1.8 � SCOPE OF RESEARCH

The thesis mainly consists of the development of the fault identification scheme 
making use of vibration signal processing and artificial intelligence to detect dif-
ferent defects in hydraulic flow-induced rotary systems and their components.
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In this book, different algorithms have been developed that classify the defects 
seeded on various components such as bearings, impellers, rotors, and buckets. 
Also, an attempt has been made to develop a vibration-based system through soft-
ware and hardware to diagnose the defect in the pump.

Other defect diagnosis techniques, including acoustic emission, lubrication, 
and temperature analysis, are also available, however, they are beyond the scope 
of this study. The present study does not include stress analysis or fracture 
mechanisms.

1.9 � ORGANIZATION OF THE BOOK

The book has been organized into six chapters.
Chapter 1 provides a brief overview of the techniques utilized in fault diagno-

sis of hydraulic flow-induced rotary systems. This chapter also includes a general 
summary of the book.

In Chapter 2, a system utilizing signal processing and artificial intelligence 
methods for diagnosing faults in Pelton turbines has been suggested. The effi-
ciency of the proposed system has been demonstrated through experimental 
research and subsequently confirmed through comparative analysis.

In Chapter 3, a method for detecting defects on the inner race, outer race, and 
rollers of a Francis turbine bearing has been introduced. This method has been 
implemented on experimental data, and its effectiveness in diagnosing faults has 
been evaluated.

Chapter 4 focuses on the automated detection of defects in different parts of 
the centrifugal pump, including the bearing and impeller. The specifics of the 
experiments and the outcomes of the automated defect identification have 
been shared.

In Chapter 5, a method for identifying defects in the inner race, outer race, and 
roller of the bearing has been introduced. The method has been used on experi-
mental signals, and its effectiveness in diagnosing faults is evaluated.

Finally, the scope of future research has been presented in Chapter 6.
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2.1 � INTRODUCTION

A Pelton turbine is an impulse turbine that generates mechanical energy by utiliz-
ing the momentum change of a fluid jet [33–35]. The rotor of a Pelton turbine, 
featuring buckets attached to a shaft and held in place by bearings, can be prone 
to harm due to factors such as corrosion, erosion, metallurgical flaws, cavitation, 
and insufficient lubrication [36, 37]. The primary components of a Pelton turbine 
that are susceptible to failure include bearings, nozzles, servomotors, and buckets. 
Condition monitoring, using acoustic or vibration analysis, can provide early 
warnings of defects. While acoustic monitoring offers advantages, vibration mon-
itoring is often preferred due to its reduced sensitivity to environmental noise. 
This chapter focuses on two specific defect cases: bucket and bearing defects 
[38, 39].

2.2 � DIAGNOSIS OF BUCKET DEFECT (CASE 1)

Pelton turbine buckets are susceptible to various forms of damage. Wavy erosion 
creates a wavy pattern on the splitter edge [20]; ripple erosion forms wave-like 
deformations on the curved surface due to sediment particle impact [21]. Bulging 
erosion involves thinning and outward bulging between the splitter and curved 
surface [22]. Cavitation erosion, particularly in multi-jet turbines, causes pitting, 
especially near the bucket inlet and root [23]. A polished surface can develop due 
to water droplet impact, trapping sediment and creating an abrasive environment 
[24]. Finally, hydro-abrasive erosion in coated buckets is influenced by coating 
quality and primarily affects the splitter and cutout areas.

Time-domain and frequency-domain analyses are widely used techniques for 
fault diagnosis [40]. Other techniques include wavelet transforms (WT) [40, 41], 
wavelet packet transforms (WPT) [42, 43], and signal sparse decomposition 
methods [44, 45]. However, WT and WPT are nonadaptive, requiring predefined 
wavelet functions [46, 47], while sparse decomposition, though adaptive, demands 
significant computational resources for large industrial datasets [48].

Ensemble empirical mode decomposition (EEMD) adaptively decomposes 
signals into intrinsic mode functions (IMFs) [49, 50], offering advantages in fault 
diagnosis despite limitations. A key weakness is the inability to separate compo-
nents with frequencies within an octave, leading to mode mixing [51]. Additionally, 
empirical mode decomposition (EMD)’s susceptibility to noise (intermittence) 
[51], where a single IMF may contain multiple scales or similar scales appear 

Fault Diagnosis of the 
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across multiple IMFs, also contributes to mode mixing. These issues have spurred 
the development of improved EMD methods.

EEMD, an improved version of EMD, addresses mode mixing by adding white 
noise before decomposition [52]. However, EEMD’s limitations include difficulty 
in determining optimal white noise amplitude and ensemble number, hindering its 
adaptability. Furthermore, while EEMD significantly improves mode separation, 
it does not completely resolve the issue.

To reduce mode mixing in EMD, Li et al. [51] proposed a method called time-
varying filtering-based EMD (TVF-EMD), which utilizes a B-spline approximation 
filter during the shifting process. TVF-EMD offers several advantages over existing 
methods such as EEMD and multivariate EMD [53]: (1) it simultaneously resolves 
separation and intermittence issues; (2) its time-varying filter handles mode mixing 
and time-varying features better than EEMD and variational mode decomposition; 
and (3) an improved stopping criterion enhances adaptability, especially at low sam-
pling rates. Li et al. [51] demonstrated TVF-EMD’s effectiveness through simulations 
and real-signal analysis, showing the significant influence of bandwidth threshold ξ 
(separation performance) and B-spline order n (filtering performance) [51]. However, 
optimal parameter selection (ξ and n) is crucial and challenging, requiring optimiza-
tion techniques. The following contribution has been made in Case 1.

	•	 An amended grey wolf optimization (AGWO) technique, which integrates 
position updating and Gaussian mutation strategies, is employed to determine 
ideal TVF-EMD parameters. This refinement helps the fundamental grey 
wolf optimization (GWO) algorithm avoid becoming stuck in local minima, 
thereby enhancing convergence speed and minimizing computational time.

	•	 The suggested optimization algorithm employs kernel estimate for mutual 
information (KEMI) as its objective function. This function is integrated 
into the proposed health condition monitoring system for Pelton turbines.

	•	 By utilizing the best parameters, TVF-EMD separates the original signal 
into multiple IMFs.

	•	 The least KEMI value (fitness function) signifies the best solution, for 
which a scalogram is created for every health condition.

	•	 Scalograms produced from the best solution are utilized to form training and 
testing datasets. A convolutional neural network (CNN) model, which is trained 
on this dataset, is assessed for classification accuracy using the testing set.

2.2.1 � Theoretical Background

2.2.1.1 � Time-Varying Filter-Based Empirical Mode Decomposition 
(TVF-EMD)

EMD decomposes a signal ( )x t  into IMFs and a residual ( ) ,r t  as shown in Eq. (2.1).

	
( ) ( ) ( )

=

= +∑
1

N

i

i

x t imf t r t
	

(2.1)
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where ( )iimf t  is ith IMF. In EMD, decomposition is a shifting process that takes 
place as per the given steps:

	 (1)	 Estimation of the “local mean” ( )m t  and
	 (2)	 The mean ( )m t  is recursively subtracted from the input signal until the 

stopping criteria are met.

In TVF-EMD, local narrow-band signals (with characteristics similar to mono-
components, but yield improved Hilbert spectra) replace mono-components to 
enhance EMD performance. These signals are defined by an instantaneous band-
width below a given threshold. The method involves determining local cut-off 
frequencies and applying a time-varying filter [51]. The shifting process in TVF-
EMD uses this filter, following the steps outlined in [51].

	 A.	 Estimation of the local cut-off frequency
A B-spline approximation filter evaluates the dynamically changing cut-off 
frequency. This process includes generating polynomial splines that repre-
sent the input signal, as explained in Eq. (2.2).

	
( ) ( ) ( )

∞

=−∞

= −∑ /n n
m

k

g t c k t m kβ
	

(2.2)

The B-spline function, denoted as ( ) ,n tβ  along with coefficients c(k), order n, 
and knots m, defines the B-spline approximation. For given n and m, the 
approximation minimizes the squared error 2

mε  by determining optimal coef-
ficients ( ).c k

	
( ) ( )( )

+∞

↑
=−∞

= − ∗  ∑
2

2 n
m mm

t

x t c b tε
	

(2.3)

where ( ) ( )β=: / ,n n
mb t t m  

↑
  • m

 a .m  The asterisk * indicates the convolution oper-
ation. Then ( )c k  can be determined by

	 ( ) ( )
↓

 = ∗ 
n
m

m
c k p x k

	
(2.4)

In the above equation, 
↓

  • m
 represents down-sampling operation by .m  The pre-

filter is indicated by ( ) ( )
−

↓

  = ∗ ∗   

1

.n n n n
m m m m

m
p b b b t  By substituting the value of 

( ) ,c k  Eq. (2.2) takes the following form:

	 ( )
↓

 = ∗ ∗ 
n n n
m m m

m
g p x b t

	
(2.5)
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Eq. (2.5) defines a specific low-pass filter for B-spline approximation, where the 
knot spacing, ,m  influences the filter’s local cut-off frequency. Because the knot 
information is initially unknown, the local cutoff frequency is first estimated from 
the input signal to construct the time-varying filter. This process proceeds as follows:

Step 1: Calculating the instantaneous amplitude, ( ) ,A t  and instantaneous fre-
quency, ( )′ ,tϕ  of a signal, ( ) ,x t  using the Hilbert transform.

	 ( ) ( )= +
22 ˆA t x x t 	 (2.6)

	 ( ) ( ) ( )( )( )′ = arctan /ˆ /t d x t x t dtϕ
	

(2.7)

where ( )x̂ t  is the Hilbert transform of ( )x t  signal.

Step 2: Locate the maxima { }maxt  and minima { }mint  of ( ).A t  The signal 
( ) ( ) ( ) ( ) ( )( )= + = eˆ xpz t x t jx x A t j tϕ  is the analytical signal corre

sponding to ( ).x t  ( )tϕ  is the instantaneous phase represented as 

( ) ( ) ( ) =  arcta .ˆn /t x t x tϕ  In the case of a multicomponent signal, ( )z t  is 
expressed as the combination of two signals.

	 ( ) ( ) ( )( ) ( )( ) ( )( )= = +1 1 2 2exp exp expz t A t j t a j t a j tϕ ϕ ϕ 	 (2.8)

Thus, the following equations can be obtained:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) = + + − 
2 2 2

1 2 1 2 1 22 cosA t a t a t a t a t t tϕ ϕ 	 (2.9)

	

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

  ′ + −  ′ =
  ′+ + −  
  ′ −  +
  ′− −  

2
1 1 1 2 1 2

2 2
2 1 2 1 2

1 2 1 2

2
2 1 1 2

cos1

cos

sin1

sin

t

t a t a t a t t t
t

A t t a t a t a t t t

a t a t t t

A t a a t t t
	

(2.10)

where ( )ia t  and ( )i tϕ  represents amplitude and phase for the thi  component.
Using Eq. (2.9), the local minimum of ( )A t  is determined at min,t  which 

satisfies the given equation:

	 ( ) ( ) − = − 1 min 2 mincos 1t tϕ ϕ 	 (2.11)

On substituting Eq. (2.11) into Eq. (2.9) and Eq. (2.10), following Eqs. 
(2.12) and (2.13) are obtained:

	 ( ) ( ) ( )= −min 1 min 2 minA t a t a t 	 (2.12)
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

ϕ ϕ

ϕ

′′ = −

′+ −

2 2
min min 1 min 1 min 1 min 2 min

2
2 min 2 min 1 min 2 min

t A t t a t a t a t

t a t a t a t 	
(2.13)

Since ( )minA t  is minima of ( ) ,A t  ( )′ =min 0A t  is obtained. Thus,

	 ( ) ( )′ ′− =1 min 2 min 0a t a t 	 (2.14)

On solving Eqs. (2.11)–(2.14), ( ) ( ) ( ) ( )ϕ ϕ1 min 2 min 1 min 2 min, , , anda t a t t t  are 
computed. In similar way ( ) ( ) ( ) ( )ϕ ϕ1 max 2 max 1 max 2 max, , , anda t a t t t  are 
obtained from Eqs. (2.15)–(2.18).

	 ( ) ( ) − = 1 max 2 maxcos 1t tϕ ϕ 	 (2.15)

	 ( ) ( ) ( )= +max 1 max 2 maxA t a t a t 	 (2.16)

	

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

ϕ ϕ

ϕ

′′ = +

′+ +

2 2
max max 1 max 1 max 1 max 2 max

2
2 max 2 max 1 max 2 max

t A t t a t a t a t

t a t a t a t 	
(2.17)

	 ( ) ( )′ ′+ =1 max 2 max 0a t a t 	 (2.18)

Step 3: Computing ( )1a t  and ( )2a t .
The B-spline functions are given in Eqs. (2.19) and (2.20).

	 ( ) ( ) ( )= −1 1 2t a t a tβ 	 (2.19)

	 ( ) ( ) ( )= +2 1 2t a t a tβ 	 (2.20)

Using Eq. (4.9), the above equations can also be written as given in Eqs. 
(2.21) and (2.22):

	 ( ) ( ) ( ) ( )= = −1 min min 1 min 2 mint A t a t a tβ 	 (2.21)

	 ( ) ( ) ( ) ( )= = +2 max max 1 max 2 maxt A t a t a tβ 	 (2.22)

Using interpolation technique between min{( })A t  and max{( }),A t  the ( )1 tβ  
and ( )2 tβ  can be easily computed. The ( )1a t  and ( )2a t  are slow varying 
components which can be computed using Eqs. (2.19) and (2.20). The mod-
ified form is given in Eqs. (2.23) and (2.24) as

	 ( ) ( ) ( ) = + 1 1 2 / 2a t t tβ β 	 (2.23)
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	 ( ) ( ) ( ) = − 2 2 1 / 2a t t tβ β 	 (2.24)

Step 4: Calculating ϕ′1 and ϕ′2.
The ( )tη  are expressed as given in Eqs. (2.25) and (2.26) which is the func-
tion of ( )ϕ′1 t  and ( )ϕ′2 t

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )η ϕ ϕ   ′ ′= − + −   
2 2

1 1 1 1 2 2 2 1 2t a t a t a t a t a t a t
	

(2.25)

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )η ϕ ϕ   ′ ′= + + +   
2 2

2 1 1 1 2 2 2 1 2t a t a t a t a t a t a t
	

(2.26)

Here, ( )1 ,a t  ( )2 ,a t  ( )ϕ′1 ,t  and ( )ϕ′2 t  are slow varying components. ( )1 tη  and 
( )2 tη  are solved using Eqs. (2.25) and (2.26) by making interpolation 

between { }( ) { }( )′ 2
min mint A tϕ  and { }( ) { }( )′ 2

max max .t A tϕ
The components ( )ϕ′1 t  and ( )ϕ′2 t  take the form as given in Eqs. (2.27) 

and (2.28).

	
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
η η

ϕ′ = +
− +

1 2
1 2 2

1 1 2 1 1 22 2 2 2

t t
t

a t a t a t a t a t a t 	
(2.27)

	
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
η η

ϕ′ = +
− +

1 2
2 2 2

1 1 2 1 1 22 2 2 2

t t
t

a t a t a t a t a t a t 	
(2.28)

Using Eq. (2.10), Eq. (2.25) and Eq. (2.26) can be modified and written as 
given in Eqs. (2.29) and (2.30):

	

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

η ϕ ϕ

ϕ

 ′= ′ = − 
 ′+ − 

2 2
1 min min min 1 min 1 min 1 min 2 min

2
2 min 2 min 1 min 2 min

t t A t t a t a t a t

t a t a t a t 	
(2.29)

	

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

η ϕ ϕ

ϕ

 ′= ′ = − 
 ′+ − 

2 2
2 max max max 1 max 1 max 1 max 2 max

2
2 max 2 max 1 max 2 max

t t A t t a t a t a t

t a t a t a t 	
(2.30)

Step 5: Computing local cut-off frequency ( )ϕ′ .bis t  The local cut-off frequency 
is computed using Eq. (2.31) as given below.

	
( ) ( ) ( ) ( ) ( )

( ) ( )
ϕ ϕ η η

ϕ
′ ′+ −

′ = =1 2 2 1

1 22 4
bis

t t t t
t

a t a t 	
(2.31)

Step 6: Realigning ( )ϕ′bis t  to address the issue of intermittence problems.
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	 B.	 Filtering input signal to obtain local mean
Intermittent noise affects the local cutoff frequency, ( )ϕ′ ,bis t  calculated in 
Step 5. Algorithm 1 [51] (Figure 2.1) addresses this using a time-varying 
filter to refine ( )ϕ′ .bis t

With local cut-off frequency, the signal ( )h t  can be viewed as in Eq. (2.32).

	
( ) ( )ϕ ′=   ∫cos bish t t dt

	
(2.32)

A B-spline approximation filter is created using the extrema (knots) of ( ) ,h t  denoted 
as { }mint  and { }maxt  of ( ) ,h t  to align the filter’s cutoff frequency with ( )ϕ′ .bis t  This 
filter is then applied to the input signal, ( ) ,x t  resulting in an approximation, ( ).m t

	 C.	 Verification of residual signal in meeting the stopping criterion

A narrowband signal is selected based on its instantaneous bandwidth. Eq. (2.33) 
expresses a relative criterion for this selection.

	
( ) ( )

( )
= Loughlin

avg

B t
t

t
θ

ϕ 	
(2.33)

A signal is classified as narrowband if ( )tθ  is below the threshold ( ) ≤  .tξ θ ξ  
Eqs. (2.34) and (2.35), respectively, define the average instantaneous frequency 
φavg(t) and the Loughlin instantaneous bandwidth .LoughlinB

	
( ) ( ) ( ) ( ) ( )

( ) ( )
ϕ ϕ

ϕ
′ ′+

=
+

2 2
1 1 2 2

2 2
1 2

avg

a t t a t t
t

a t a t 	
(2.34)

FIGURE 2.1  Algorithm-1 for frequency realignment.
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( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( )

ϕ ϕ′ ′+′ ′+
= +

+ +

2
2 22 2 1 2 1 21 2

22 2 2 21 2 1 2

Loughlin

a t a t t ta t a t
B t

a t a t a t a t
	

(2.35)

The TVF-EMD shifting process steps are detailed in Algorithm 2 [51] (Figure 2.2).

	 D.	 Limitations of TVF-EMD
The bandwidth threshold, ξ, and B-spline order, n, which impact TVF-
EMD performance (ξ  affects separation, n affects filtering [51]), must be 
carefully chosen. Poor selection leads to mode mixing in the IMFs.

Finding the optimal combination of these parameters to best match the original 
signal is a key challenge addressed in this research.

2.2.1.2 � Convolution Neural Network (CNN)
CNNs are deep learning tools that analyze images by processing and extracting 
information [54, 55]. In contrast to other types of networks, CNNs feature a three-
dimensional structure of neurons. A standard CNN (Figure 2.3) typically consists 
of convolutional layers, a max-pooling layer, fully connected layers, and a clas-
sification layer.

	 A.	 Convolution layer: The convolutional layer, an essential part of CNNs, 
employs small filters that traverse the entire image through a process of 
shifting [56]. Convolution consists of computing the dot product of the filter 
with the image, aggregating the results over the area covered by the filter, 
and then continuing this procedure for the subsequent positions of the filter 
(Figure 2.3, Eq. 2.36).

	
( ) ( )( )−= ∗ +1 11 l ll l

j i ij jz x w bϕ
	

(2.36)

FIGURE 2.2  Shifting process of TVF-EMD.
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where ϕ represents the sigmoid activation function, ( )1
jb  is the bias at the thl  layer, 

and ( )1
ijw  represents the weight between the thi  input and thj  output at the thl  layer.

	 B.	 Pooling layer: CNNs use pooling layers for downsampling. While various 
pooling functions exist, max pooling is commonly employed. The pooling 
expression is represented in Figure 2.3 and Eq. 2.37.

	 ( ) ( )( )= =max 1,1 ,y l
c f c wM y L x for x to pat pat

	
(2.37)

where ( )y
cM y  represents the pixel at location y in the thl  convolutional layer 

for the thc  channel, and cpat  and wpat  denote the patch height and width, 
respectively.

	 C.	 Fully connected layer: This layer is comparable to an artificial neural net-
work (ANN), where neurons from earlier layers are linked to neurons in the 
following layers, as illustrated in Eq. 2.38.

	
( ) ( )( )−= ∗ +2 21 l ll l

j i ij jy z w bϕ
	

(2.38)

where ϕ  is the sigmoid function, ( )2
jb  is the bias, −1l

iz  is the input from the previ-

ous layer, and ( )2
ijw  represents the weight between the input and output nodes.

The fully connected layer, which connects the preceding layer’s output 
to the next layer’s neurons, involves a large number of training parameters.

	 D.	 SoftMax layer: This layer calculates the probability distribution over all 
potential target classes.

	

( ) ( )
( )

=

=

∑ 1

exp

exp

l
jl

j k
l
j

j

y
P y

y
	

(2.39)

FIGURE 2.3  Convolution neural network architecture.
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	 (E)	 Classification output layer: This layer assesses the loss function through-
out the training process, with the goal of reducing the cost function ( )existinge  
of the CNN to enhance prediction accuracy, as illustrated in Eq. 2.40.

	 = + ∑ 2existinge CE wψ 	 (2.40)

where  CE  is cross-entropy loss as represented in Eq. (2.41).

	 =

= −∑
1

ln
m

T P
j j

j

CE y y

	

(2.41)

Here, Py  represents the predicted value, and the target value is .Ty  The 2L  regular-
ization is represented by .ψ

2.2.1.3 � Optimization of TVF-EMD using AGWO
At this stage, TVF-EMD parameter optimization (threshold and B-spline order) is 
performed to improve fault diagnosis from vibration signals. This optimization 
uses a search algorithm comprising a fitness function and a search method, 
detailed in the following section.

	 A.	 Kernel estimate for mutual information (KEMI)
KEMI quantifies the dependency between variables g  and ,j  with high val-
ues indicating strong mutual information and zero indicating independence. 
Copula transformation (rank ordering) scales the variables to the (0, 1) 
range before using Gaussian kernels to estimate marginal and joint proba-
bility distributions [57, 58]. This kernel estimator dynamically detects non-
linear dependencies. For a dataset { }= = …, , 1,2, , ,i i iz g j i N  the joint 

probability distribution, ( ) ( )− −= −∑ 2 11
,i

i

p z h G h z z
N

 is computed, where 

G is the bivariate standard normal density, h is the kernel bandwidth, and N  
is the sample size. Marginal probabilities, ( )p g  and ( ) ,p j  are derived from 
( ).p z  KEMI is then calculated as shown in Eq. (2.42).

	
( ) ( )

( ) ( )
= ∑ ,1

, log i i
i i

i ii

p g j
KEMI g j

N p g p j 	
(2.42)

Table 2.1 presents the pseudo code for the KEMI calculation algorithm. To pre-
vent mode mixing, the lowest KEMI value is chosen. In the decomposition pro-
cess, the highest value is obtained from the cumulative information across all 
modes and the raw signal is utilized to extract pertinent information. Eq. (2.43) 
specifies the ratio of the overall mutual information among modes to the total 
mutual information between the original signal and its modes.
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( ) ( )( )
( )( )

−

=

=

+
= ∑

∑

1

1
 

1

mod ,mod 1

mod ,

K

K
fitness function K

K

KEMI k k
KEMI

KEMI k g
	

(2.43)

The KEMI fitness function reduces the mutual information among modes while 
enhancing the information derived from the original signal to avoid mode mixing.

	 B.	 Amended grey wolf optimization (AGWO)
GWO, a meta-heuristic algorithm introduced by Mirjalili et al. [59], simu-
lates wolf pack hunting. As shown in Figure 2.4, the wolf hierarchy is 
divided into four levels ( ), , , .α γ δ ω  The top three agents ( ), ,α γ δ  guide the 
optimization process, while the remaining wolves ( )ω  follow. Subsequent 
subsections detail GWO and AGWO, including the rationale behind 
AGWO’s modifications.

	•	 Encircling prey
The initial stage of the hunting process, where wolves encircle their prey, 
is simulated by Eqs. (2.44) and (2.45).

	 ( ) ( )= −. PD C X l X l 	 (2.44) 

	 ( ) ( )+ = −1 .pX l X l A D	 (2.45)

TABLE 2.1
Pseudocode to Calculate KEMI

Input: Variable ,g  Variable j

Output: KEMI ( ),g j

1: Calculate the size of variables

2: Obtain Copula-transform

3: Calculate values for kernels at each data point

Kg = square form (exp (-ssd ([g; g])/h2)) + eye (Mg);

Kj = square form (exp (-ssd ([j; j])/h2)) + eye (Mj);

4: Calculate kernel sums for marginal probabilities

Cf = sum (Kg);

Cl = sum (Kj);

5: Kernel product for joint probabilities

Kgj = Kg. *Kj;

m = sum (Cg. *Cj) *sum (Kgj)./(Cg*Kj)./(Cj*Kg);

KEMI = mean (log(m));

ssd indicates the sum of squared differences
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In these equations, l  represents the current iteration, pX  denotes the prey’s posi-
tion, and X represents the grey wolf’s position. The coefficient vectors A  and C  
are calculated using Eqs. (2.46) and (2.47), respectively.

	 = −12 .A a r a 	 (2.46)

	 = 22.C r 	 (2.47)

where the random vectors 1r  and 2r  are within the interval [0, 1]. The parameter a 

is defined as 
  −  

  

2
2 ,

t

T
 where t is the current iteration and T  is the maximum 

number of iterations. This ensures a linearly decreases from 2 to 0 over the 
iterations.

Grey wolf position updates, based on prey location, are calculated using Eqs. 
(2.44) and (2.45). This is achieved by adjusting the A and C  vectors. The random 
vectors (wolves) 1r  and 2r  can assume any position, as detailed in Ref. [59].

	•	 Hunting
Initially, the top three search agents are randomly initialized, as the optimal 
solution (target) is unknown. Their positions are then saved and used to 
update the positions of the remaining agents. This process is described by 
Eqs. (2.48), (2.49), and (2.50).

	 = − = − = −1 2 3. , . , .D C X X D C X X D C X Xα α γ γ γ δ 	 (2.48)

	 = − = − = −1 1 2 2 3 3. , . , .X X A D X X A D X X A Dα α γ γ δ δ 	 (2.49)

	
( ) + ++ = 1 2 31

3
X X X

X t
	

(2.50)

FIGURE 2.4  Hierarchy of grey wolf.
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	•	 Attacking prey
The pursuit of the prey persists until it is caught, accomplished by lowering 
the value of a in the hunting process framework. Lowering a also lessens 
the variations in A (a random value ranging from −  2 ,2 ).a a  When A  is 
less than 1, the wolves gather around the prey.

	•	 Search for prey (exploration)
Exploration is crucial for effective hunting; therefore, AGWO incorporates 
additional operators during exploration to enhance performance. Grey 
wolves initially disperse while searching for prey, converging only upon 
locating it to initiate an attack.

Mathematically, ≥ 1A  causes the grey wolves to diverge, searching for better 
prey. Simultaneously, C  takes random values to emphasize exploration, regardless 
of iteration number. C  also weights each prey, guiding the wolves toward it.

2.2.1.4 � Proposed Modifications in GWO
This section outlines the enhancements made to the fundamental GWO algorithm. 
These upgrades, which involve a position-updating method and a Gaussian muta-
tion approach centered on population division and reconstruction, are designed to 
improve the search capability of the algorithm.

	 A.	 Position updating
During the hunt, wolf positions are updated according to a normal distribu-
tion. Eq. (2.51) incorporates weighting factors 1,V  2,V  and 3V  into Eq. (2.50) 
to achieve this position update.

	
( ) + ++ = 1 1 2 2 3 31

3
V X V X V X

X t
	

(2.51)

where + + =1 2 3 1,V V V  and 1 2,,V V  and 3V  are drawn from a normal distribu-
tion. The ranges for 1V  and 2V  were determined empirically through experi-
mentation to optimize performance.

	 =   1 0.1,0.5V 	 (2.52)

	 =   2 0.7,0.1V 	 (2.53)

	 = − +  3 1 21V V V 	 (2.54)

In this context, 0.1 represents the mean and 0.5 signifies the variance for 1.V  
Likewise, 0.7 denotes the mean and 0.1 indicates the variance for 2V  in order 
to identify the optimal solution.
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	 B.	 Gaussian mutation strategy
Back and Schwefel [60] presented a Gaussian mutation approach to enhance 
the effectiveness of metaheuristic algorithms [61, 62]. This method creates 
new solutions that are close to current ones by taking small steps to navigate 
the search space while preserving diversity. The Gaussian density function 
is characterized as follows:

	

( )
( )

−

=

2

2
2

2
0,

1

2
f e

θ
σ

σ θ
σ π 	

(2.55)

In this context, σ 2 denotes the variance associated with the possible solu-
tion. Eq. (2.55) illustrates a probability density function that has a minimal 
value at a mean of 0 and a standard deviation of 1. A random vector, 

( ) ,Gaussian θ  is generated using this density function as shown in Eq. 2.56.

	 ( )( )θ′ = +1i iG G Gaussian 	 (2.56)

where iG  is ith mutated candidate solution and ( )Gaussian θ  is a ran-
dom vector.

2.2.2 �D efect Identification Scheme

An AGWO algorithm is proposed to determine the optimal bandwidth threshold ( )ξ  
and B-spline order ( )n  for TVF-EMD, using KEMI as the fitness function [Eq. 2.57]. 
This enhanced GWO algorithm incorporates position updating and Gaussian muta-
tion strategies to minimize the fitness function as presented in Eq. 2.57.

	

{ }( ) ( )γ ξ

ξ ε
==

  
= …







, min

. , 0,0.8

5,6, ,30

nobjective function KEMI

s t

n
	

(2.57)

Here, KEMI denotes the kernel estimate of mutual information utilized in the TVF-
EMD decomposition modes. The parameters ( )= ,nγ ξ  refer to the TVF-EMD 
parameters that need to be optimized, where ξ  (bandwidth threshold) varies between 
[0, 0.8] and n (B-spline order) ranges from [5, 30], as indicated in the literature [54]. 
The procedure for applying the proposed method is outlined in the following steps:

Step 1: �Collect vibration data from the Pelton turbine. Set up the AGWO algo-
rithm with a specified population size N  and a maximum number of 
iterations ,L  applying a defined range for the TVF-EMD parameters. 
Document the objective function value for every iteration.
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Step 2: �Break down the raw vibration data into IMFs utilizing TVF-EMD and 
compute the KEMI for all IMFs. Document the lowest objective func-
tion value for every iteration.

Step 3: �When the iteration count l  meets or exceeds the maximum allowed itera-
tions ,L  the algorithm stops running. If not, increase l and keep iterating.

Step 4: �The combination of parameters that produces the lowest value for the 
KEMI fitness function is determined and recorded. The IMF associated 
with this lowest fitness value is referred to as the sensitive IMF.

Step 5: �Scalograms are produced for the sensitive IMF and saved to form 
image data.

Step 6: �The image data is fed into a CNN to assess classification accuracy. The 
process for fault diagnosis is demonstrated in Figure 2.5.

2.2.3 �A pplication of Defect Identification Scheme on Pelton Turbine

	 A.	 Test rig
The suggested fault diagnosis method is implemented on a Pelton turbine 
(refer to Table 2.2 for specifications and Figure 2.6 for the test rig). This 
turbine consists of components such as a rotor with 16 buckets, casing, and 
nozzle, which are prone to defects. The buckets function as cantilever 
beams, directly experiencing the force of the water jet, which leads to 
fatigue. The rotor is mounted on a shaft and is supported by two SKF UC 
206 bearings, driven by a 15 hp motor combined with a centrifugal pump 
system. The buckets receive the impact of the tangential water jet emitted 
from the nozzle.

FIGURE 2.5  Fault detection methodology.
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	 (B)	 Data acquisition
Vibration data was gathered for four different conditions of the Pelton tur-
bine: healthy, splitter wear, added mass, and a missing bucket (see Figure 
2.7). For each of these conditions, 350 signals were collected at seven dis-
tinct speeds (ranging from 900 to 1500 rpm) using a uniaxial accelerome-
ter from PCB® Piezotronics (with a sensitivity of 100 mV/g) installed on a 
bearing. A National Instruments data acquisition system with 24-bit reso-
lution and 4 channels, operating within a LabVIEW environment, recorded 
the data at a frequency of 70,000 Hz, resulting in 14,000 data points for 
each sample. The raw signals underwent processing using an optimally 
parameterized TVF-EMD to extract IMFs. The mode most sensitive to 
detection (as established by KEMI) was chosen to create continuous wave-
let transform scalograms, thus producing the image dataset. The analysis 
was performed using MATLAB R2019a, with data acquisition conducted 
through LabVIEW 2020. The specifications of the system used were: 
Intel(R) Core(TM) i5-4210U CPU running at 1.70 GHz and capable of 
2.40 GHz, equipped with 8 GB of RAM, and operating on 64-bit 
Windows 10.

TABLE 2.2
Specification of Pelton Turbine

Maximum Output 3 KW

Supply head 30 m

Maximum discharge 400 liter per minute

Sump tank capacity 200 liters

Number of buckets 16

FIGURE 2.6  Pelton turbine test rig.
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Figure 2.8(a) shows a typical time-domain vibration signal at 1200 rpm, while 
Figure 2.8(b) displays its TVF-EMD decomposition into IMFs using the opti-
mized parameters ( )= =0.0073, 23nξ  obtained via the proposed AGWO algo-
rithm. KEMI values were calculated for each IMF: 0.0379, 0.0338, 0.0360, 
0.0313, 0.0331, 0.0337, 0.0302, 0.0375, 0.0365, and 1.8826. IMF 7, exhibiting 
the minimum KEMI value (and thus minimum mutual information with the raw 
signal), was selected for further analysis. Its scalogram is shown in Figure 2.8(c).

Splitter wear was simulated by grinding approximately 70% of a bucket’s split-
ter. Figure 2.9(a) shows a raw vibration signal under this condition. AGWO opti-
mization, using KEMI, yielded optimal TVF-EMD parameters of = 0.0313ξ  and 
= 18n  at 1200 rpm. The resulting decomposition is shown in Figure 2.9(b). KEMI 

values for the 10 IMFs were: 0.0350, 0.0346, 0.0346, 0.0405, 0.0317, 0.0324, 
0.0351, 0.342, 0.0349, and 1.7553. IMF 5, exhibiting the least mutual informa-
tion, was selected for scalogram generation (Figure 2.9c).

Figure 2.10(a) shows a typical vibration signal at 1200 rpm with added 
mass (25 grams) on a bucket to simulate imbalance. The TVF-EMD 

FIGURE 2.7  Various health states: (a) optimal health, (b) wear on the splitter, (c) addi-
tional mass, and (d) absence of one bucket.
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FIGURE 2.8  (a) Raw signal, (b) decomposed signals, and 
(Continued)
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decomposition is shown in Figure 2.10(b). Using the previously determined 
optimal TVF-EMD parameters, KEMI values for the IMFs were calculated: 
0.0365, 0.0387, 0.0323, 0.0321, 0.0367, 0.0343, 0.0362, 0.0357, 0.0336, and 
2.0414. IMF 4, possessing the minimum KEMI value (and therefore minimum 

FIGURE 2.9  (a) Unprocessed signal, (b) decomposed signals, and (c) scalogram at 1200 
rpm under conditions of splitter wear.

FIGURE 2.8  (Continued) (c) scalogram at 1200 rpm under healthy condition.

(Continued)
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FIGURE 2.9  (Continued) (b) decomposed signals, and (c) scalogram at 1200 rpm under 
conditions of splitter wear.
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FIGURE 2.10  (a) Unprocessed signal, (b) decomposed signals, and (c) scalogram at 
1200 rpm with added mass condition. (Continued)
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mutual information with the raw signal), was selected for scalogram genera-
tion (Figure 2.10c).

Figure 2.11(a) shows a typical 1200 rpm vibration signal with a missing 
bucket (simulating imbalance). Optimized TVF-EMD ( )= =0.0095, 19nξ  

FIGURE 2.10  (Continued) (c) scalogram at 1200 rpm with added mass condition.

FIGURE 2.11  (a) Unprocessed signal, (b) decomposed signals, and (c) scalogram 
recorded at a speed of 1200 rpm with one bucket absent.

(Continued)
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FIGURE 2.11  (Continued) (b) decomposed signals, and (c) scalogram recorded at a 
speed of 1200 rpm with one bucket absent.
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decomposes this signal into ten IMFs [Figure 2.11(b)]. IMF 6, selected based 
on the minimum KEMI value, is used to generate the scalogram as shown in 
Figure 2.11(c).

2.2.4 �R esults and Discussion

2.2.4.1 � Comparison of the AGWO with Other Art of Optimization
The AGWO algorithm was evaluated using 23 benchmark functions (see Table 2.3) 
and was compared to GWO, salp swarm algorithm (SSA), sine-cosine (SCA), 
whale optimization algorithm (WOA), ant lion optimization (ALO), and grass-
hopper optimization algorithm (GOA) based on their mean results and standard 
deviations (refer to Table 2.4). AGWO achieved better performance than the other 
algorithms on 17 of the functions (F1–F7, F9–F11, F15, F17–F18, F20–F22, and 
F23), showing the smallest standard deviation. SCA excelled on functions F8 and 
F16, while GOA was the top performer on F12 and F13, SSA on F14, and ALO 
on F19. These findings highlight the exceptional optimization capabilities 
of AGWO.

Here, C denotes the function’s characteristics, and D represents the dimension-
ality. US, UN, MS, and MN refer to unimodal separable, unimodal non-separable, 
multimodal separable, and multimodal non-separable functions, respectively.

The algorithms were evaluated on benchmark functions by calculating the 
mean and standard deviation over 20 independent runs (refer to Table 2.5), but 
individual run comparisons were not made. To determine statistical signifi-
cance, a Wilcoxon rank-sum test was conducted at a 5% significance level, 
resulting in P-values (see Table 2.5). P-values under 0.05 lead to the rejection of 
the null hypothesis, suggesting there are statistically significant differences. 
The algorithm that performed best (based on the lowest standard deviation) for 
each function was compared to the others. Instances of self-comparison are 
indicated as N/A.

Table 2.5 shows AGWO achieved the best results for 15 functions (F1–F7, 
F9–F11, F17, F19, and F21–F23), while SCA performed best on F8, F15, F16, 
and F18; GOA on F12, F13, and F20; and GOA and SSA performed equally well 
on F14. Tables 2.4 and 2.5 demonstrate AGWO’s statistically significant superior-
ity over other algorithms [60], indicating its enhanced effectiveness for Pelton 
turbine fault identification.

2.2.4.2 � The Need for Optimizing TVF-EMD Parameters
The TVF-EMD technique breaks down signals into IMFs, selecting a significant 
IMF through an appropriate index. Typically, the parameters of TVF-EMD (ξ 
and n) are determined based on empirical methods, which may impact the accu-
racy of the decomposition. This study suggests utilizing AGWO, an enhanced 
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TABLE 2.3
Definition of Benchmark Functions

S. No. Function Formulation D Range C Global Min.

F1 Sphere ( )
=

=∑ 2

1

D

i

i

F x x 30 [−100, 100] US 0

F2 Schwefel 2.22 ( )
= =

= +∑ ∏
1 1

D D

i i

i i

F x x x 30 [−10, 10] UN 0

F3 Schwefel 1.2 ( )
= =

 
 =
 
 

∑ ∑ 2

1 1

D i

j

i j

F x x 30 [−100, 100] UN 0

F4 Schwefel 2.21 ( ) { }= ≤ ≤max ,1i iF x x i D 30 [−100, 100] US 0

F5 Rosenbrock ( ) ( ) ( )
−

+

=

 = − + −  ∑
1

2 22
1

1

100 1
D

i i i

i

F x x x x 30 [−30, 30] UN 0

F6 Step ( ) ( )
=

= +  ∑
2

1

0.5
D

i

i

F x x 30 [−100, 100] US 0

F7 Quartic ( ) )
=

= + ∑ 4

1

0,1
D

i

i

F x ix random 30 [−1.28, 1.28] US 0

F8 Schwefel ( ) ( )
=

= −∑
1

sin
D

i i

i

F x x x 10 [−500, 500] MS −418.9829*D

F9 Rastrigin ( ) ( )( )
=

= + −∑ 2

1

10 10cos 2
D

i i

i

F x D x xπ 30 [−5.12, 5.12] MS 0

(Continued)
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S. No. Function Formulation D Range C Global Min.

F10 Ackley ( ) ( )
= =

   
   = − − − + +
   

  
∑ ∑2

1 1

1 1
20exp 0.2 exp cos 2 20

D D

i i

i i

F x x x e
D D

π 30 [−32, 32] MN 0

F11 Griewank ( )
= =

 
= − + 

 
∑ ∏2

1 1

1
cos 1

4000

D D
i

i

i i

x
F x x

i
30 [−600, 600] MN 0

F12 Penalized ( ) ( ) ( ) ( ) ( )

( )

π π π
−

+

=

=

   = + − + + −  
  

+

∑

∑

1
2 22 2

1 1

1

1

10sin 1 1 10sin 1

,10,100,4

D

i i D

i
D

i

i

F x y y y y
D

u x

30 [−50, 50] MN 0

( )
( )

( )

− >
+

= + = − < <

− −





 − <

;
1

where 1 , , , , 0;
4

;

m
i i

i
i i i

m
i i

k x a x a
x

y and u x a k m a x a

k x a x a

F13 Penalized 2 ( )
( ) ( ) ( )

( ) ( )
( )

π π

π

+

=
=

 
  + − +  = + 

  + − +   

∑ ∑
22 2

1 1

1
2 2 1

sin 3 1 1 sin 3
0.1 ,5,100,4

1 1 sin 2

D

D
i i

ii

i
D D

x x x
F x u x

x x

30 [−50, 50] MN 0

F14 Foxholes ( )
( )=

=

 
 

= + 
 + −
 

∑ ∑
25

6
1

1

1 1
500 D

j i ij
i

F x
j x a

2 [−65.536, 65.536] MS 0.998004

TABLE 2.3  (CONTINUED)
Definition of Benchmark Functions
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S. No. Function Formulation D Range C Global Min.

F15 Kowalik ( ) ( )
=

 +
 = −
 + +
 

∑
2

211
1 2

2
3 41

i i

i
i ii

x b b x
F x a

b b x x
4 [−5, 5] MN 0.0003075

F16 Six-hump 
camel-back

( ) = − + + − +2 4 6 2 4
1 1 1 1 2 2 2

1
4 2.1 4 4

3
F x x x x x x x x 2 [−5, 5] MN −1.0316285

F17 Branin ( )    = − + − + − +   
   

2
2

2 1 1 12

5.1 5 1
6 10 1 cos 10

84
F x x x x x

π ππ
2 [−5, 5] MN 0.398

F18 Goldstein-Price ( ) ( ) ( )
( ) ( )

 = + + + − + − + − + +  
 × + − × − + + − +  

2 2 2 2
1 2 1 1 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

1 1 19 14 3 14 3 14 6 3

30 2 3 18 32 12 48 36 27

F x x x x x x x x x x x

x x x x x x x x

2 [−2, 2] MN 3

F19 Hartman 3 ( ) ( )
= =

 
 = − − −
 
 

∑ ∑
4 3

2

1 1

expi ij j ij

i j

F x c a x p 3 [−5, 5] MN −3.862782

F20 Hartman 6 ( ) ( )
= =

 
 = − − −
 
 

∑ ∑
4 6

2

1 1

expi ij j ij

i j

F x c a x p 6 [−5, 5] MN −3.32236

F21 Shekel5 ( ) ( )( )
−

=

 = − − − +  ∑
5 1

1

T
i i i

i

F x x a x a c 4 [−5, 5] MN −10.1532

F22 Shekel7 ( ) ( )( )
−

=

 = − − − +  ∑
7 1

1

T
i i i

i

F x x a x a c 4 [−5, 5] MN −10.4029

F23 Shekel10 ( ) ( )( )
−

=

 = − − − +  ∑
10 1

1

T
i i i

i

F x x a x a c 4 [−5, 5] MN −10.5364
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TABLE 2.4
Comparison of the Proposed Algorithm with Other State of Art

Benchmark Function Optimizations Algorithms

S. No Parameters AGWO (Proposed) GWO SSA SCA WOA ALO GOA

F1 Average 0.0000 1.6822 × 10−27 9.2785 × 10−09 5.8635 × 10−28 1.0749 × 10−174 1.5679 × 10−09 1.5789 × 10−09

Std 0.0000 3.2926 × 10−27 2.5275 × 10−09 2.5965 × 10−27 0.0001 6.1292 × 10−10 1.2995 × 10−09

F2 Average 6.1135 × 10−229 7.4670 × 10−17 0.0177 2.3927 × 10−21 3.1655 × 10−107 1.6047 × 10−04 0.9994

Std 0.0000 5.5843 × 10−17 0.0795 5.1292 × 10−21 1.4178 × 10−106 4.3480 × 10−04 1.5428

F3 Average 0.0000 2.4797 × 10−05 1.4655 × 10−09 1.3645 × 10−11 1.2419 × 10+04 6.3561 × 10−07 1.2175 × 10−07

Std 0.0000 7.4078 × 10−05 6.8216 × 10−10 4.1399 × 10−11 7.9873 × 10+03 9.7641 × 10−07 2.8859 × 10−07

F4 Average 1.3248 × 10−217 7.1546 × 10−07 1.3318 × 10−05 5.9065 × 10−10 32.2856 4.9145 × 10−05 2.6025 × 10−05

Std 0.0000 8.1491 × 10−07 2.4181 × 10−06 1.7091 × 10−09 28.5950 3.7018 × 10−05 1.3877 × 10−05

F5 Average 0.0000 27.8866 42.1985 6.9228 26.5109 62.2978 78.1317

Std 0.0000 0.7314 71.3154 0.3861 0.3158 79.7189 258.6871

F6 Average 0.0000 0.7193 6.3532×10−10 0.3368 0.0140 1.8139 × 10−09 9.9609 × 10−10

Std 0.0000 0.3558 2.7101 × 10−10 0.1565 0.0118 7.6227 × 10−10 6.0218 × 10−10

F7 Average 6.5921 × 10−05 0.0018 0.0058 0.0008 8.7925 × 10−04 0.0062 0.0486

Std 6.5921 × 10−05 0.0016 0.0058 0.0006 9.3825 × 10−04 0.0044 0.0971

F8 Average −2.2572 × 10+03 −5.8793 × 10+03 −2.8442 × 10+03 −2.3603 × 10+03 −1.1147 × 10+04 −2.3874 × 10+03 −1.6823 × 10+03

Std 388.8521 1.0897 × 10+03 290.5105 122.5179 1.4553 × 10+03 459.7947 176.9365

F9 Average 0.0000 2.0687 12.9942 0.0005 2.8412 × 10−15 14.7264 5.5881

Std 0.0000 3.3984 6.5411 0.0012 1.2721 × 10−14 6.8526 4.1836

F10 Average 2.1316 × 10−15 1.0727 × 10−13 0.4713 0.4445 × 10−14 4.2643 × 10−15 0.2989 0.3764

Std 1.7386 × 10−15 1.3980 × 10−14 0.8689 0.0068 2.4393 × 10−15 0.6348 0.8476

F11 Average 0.0000 0.0032 0.2189 0.0367 0.0028 0.2039 0.1543

Std 0.0000 0.0068 0.1479 0.1680 0.0116 0.0881 0.0620
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F12 Average 0.0020 0.0457 0.1814 0.0591 0.0021 1.0969 4.9253 × 10−07

Std 0.0011 0.00212 0.2564 0.0226 0.0037 1.6858 1.4601 × 10−06

F13 Average 1.6006 0.6471 0.0031 0.2252 0.0289 0.0017 5.4868 × 10−04

Std 1.3405 0.2262 0.0036 0.0568 0.0251 0.0041 0.0025

F14 Average 2.1787 4.668 0.9980 1.5933 1.4446 1.2961 0.9880

Std 2.4303 4.4839 1.4408 × 10−16 0.9329 0.8192 0.5671 2.9563 × 10−16

F15 Average 6.4854 × 10−04 0.0044 8.2716 × 10−04 0.0008 6.6597 × 10−04 0.0048 0.0077

Std 4.2116 × 10−05 0.0092 3.2919 × 10−04 0.0004 4.7822 × 10−04 0.0081 0.0082

F16 Average −1.0316 −1.0326 −1.0326 −1.0326 −1.0326 −1.0326 −1.0416

Std 4.5168 × 10−16 2.5459 × 10−08 3.3831 × 10−15 0.0000 3.1413 × 10−12 5.1535 × 10−14 3.9452 × 10−14

F17 Average 0.3979 0.3979 0.3978 0.3988 0.3978 0.3978 0.3989

Std 0.0000 7.2878 × 10−05 7.4515 × 10−15 0.0012 3.2921 × 10−07 3.3361 × 10−14 3.7172 × 10−12

F18 Average 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Std 7.1976 × 10−15 2.5872 × 10−05 8.7227 × 10−14 0.0054 9.7787 × 10−07 1.3896 × 10−13 3.4193 × 10−13

F19 Average −3.7296 −3.8617 −3.8648 −3.8748 −3.86210 −3.8638 −3.8541

Std 0.1144 0.0021 1.0131 × 10−14 0.0028 0.0014 9.4607 × 10−15 0.1799

F20 Average −2.9933 −3.2772 −3.2453 −2.9278 −3.2245 −3.2814 −3.2581

Std 0.0250 0.7073 0.0586 0.2376 0.8121 0.0581 0.0621

F21 Average −10.1532 −9.3935 −9.1356 −2.7220 −7.8594 −6.7392 −7.2580

Std 0.3852 1.8508 2.0926 2.0884 2.9367 2.9772 3.3755

F22 Average −10.4029 −10.0193 −8.8751 −3.9521 −8.7388 −8.2953 −8.9824

Std 1.3720 × 10−16 1.7073 3.1372 1.9058 2.6217 2.9978 2.9456

F23 Average −10.3562 −9.7229 −9.6148 −4.6768 −9.3178 −7.3789 −8.5997

Std 0.3492 2.4970 2.2967 1.2558 2.5536 3.3304 3.5350
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TABLE 2.5
P-values Calculated for the Wilcoxon Rank Sum-test (Significance Level 0.05) Corresponding to the Results in Table 2.4

Ft. AGWO GWO SSA SCA WOA ALO GOA

F1 N/A 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 0.0028 6.7956 × 10−08 6.7956 × 10−08

F2 N/A 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08

F3 N/A 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08

F4 N/A 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08

F5 N/A 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09

F6 N/A 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09 8.0065 × 10−09

F7 N/A 6.7956 × 10−08 6.7956 × 10−08 9.1728 × 10−08 2.9249 × 10−05 6.7956 × 10−08 6.7956 × 10−08

F8 6.7956 × 10−08 6.7956 × 10−08 6.7956 × 10−08 N/A 6.7956 × 10−08 6.7956 × 10−08 6.5970 × 10−08

F9 N/A 7.4517 × 10−09 7.9043 × 10−09 0.0096 0.3421 7.8609 × 10−09 8.0065 × 10−09

F10 N/A 7.6187 × 10−09 7.9334 × 10−09 2.2273 × 10−08 2.3754 × 10−06 7.9919 × 10−09 8.0065 × 10−09

F11 N/A 0.0402 8.0065 × 10−09 6.6826 × 10−05 0.3421 8.0065 × 10−09 8.0065 × 10−09

F12 6.7956 × 10−08 6.7956 × 10−08 0.0012 6.7956 × 10−08 6.7956 × 10−08 0.0012 N/A

F13 6.7956 × 10−08 6.7956 × 10−08 1.0473 × 10−06 6.7956 × 10−08 1.4309 × 10−07 1.9916 × 10−04 N/A

F14 0.0021 6.4846 × 10−05 N/A 3.5055 × 10−07 0.0196 0.0196 N/A

F15 0.0070 0.2503 0.0256 N/A 1.7936 × 10−04 8.3103 × 10−04 2.7089 × 10−04

F16 7.9919 × 10−09 2.4231 × 10−09 7.9919 × 10−09 N/A 7.9919 × 10−09 7.9919 × 10−09 7.9919 × 10−09

F17 N/A 8.0065 × 10−09 4.6827 × 10−10 8.0065 × 10−09 2.5497 × 10−05 4.6827 × 10−10 4.6827 × 10−10

F18 7.9919 × 10−09 0.2084 7.9919 × 10−09 N/A 9.0065 × 10−05 7.9919 × 10−09 7.9919 × 10−09

F19 N/A 2.1025 × 10−07 4.6827 × 10−10 8.0065 × 10−09 8.0065 × 10−09 4.6827 × 10−10 0.0833

F20 0.1190 0.0052 1.7896 × 10−04 3.9295 × 10−08 3.4042 × 10−05 1.0220 × 10−08 N/A

F21 N/A 8.0065 × 10−09 0.0198 8.0065 × 10−09 7.9919 × 10−09 6.0278 × 10−05 9.1876 × 10−04

F22 N/A 8.0065 × 10−09 3.0335 × 10−08 8.0065 × 10−09 8.0065 × 10−09 0.0792 3.3265 × 10−04

F23 N/A 2.0446 × 10−07 5.8842 × 10−08 1.5747 × 10−08 1.5006 × 10−07 9.5900 × 10−08 5.2113 × 10−08
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GWO algorithm that features Gaussian mutation and position updating, for select-
ing parameters. The effectiveness of AGWO is evaluated against GWO, SSA, 
SCA, WOA, ALO, and GOA, with the convergence curves (Figure 2.12) demon-
strating its quicker convergence rate on benchmark functions.

2.2.4.3 � Results of CNN Model and Its Comparison with Other 
Classification Models

Following the methodology in Section 2.2.3, 1400 scalogram images (350 per 
health condition) were generated. A total of 700 images (175 per condition) were 
used for CNN model training, and the remaining 700 for testing (Table 2.6). Each 
image had dimensions 656 x 875 x 3.

FIGURE 2.12  Comparative analysis of the proposed algorithm against existing state-of-
the-art methods using benchmark functions to assess convergence.
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The CNN model architecture is detailed in Table 2.7. Figure 2.13(a) and 
2.13(b) shows the training accuracy and loss, respectively. The model’s accuracy 
on the test data, for each defect, is presented in Figure 2.14, showing superior 
performance compared to artificial neural network (ANN), support vector machine 
(SVM), adaptive neuro fuzzy interference system (ANFIS), and extreme learning 
machine (ELM) classifiers. Figure 2.15 explores the effect of varying the number 
of convolutional layers (five layers proved optimal).

Figure 2.16 illustrates the classification accuracy attained by the proposed 
AGWO algorithm in comparison to other optimization methods. Each algorithm 
identifies the best TVF-EMD parameters, which are subsequently utilized to cre-
ate training and testing datasets for the CNN model. The findings highlight the 
enhanced performance of the proposed AGWO algorithm.

TABLE 2.6
Description of the Training and Testing Datasets

S. No. Health Condition Training Samples Testing Samples

1 Healthy 700 (175 x 4 =700) 700 (175 x 4 =700)

2 Splitter wear

3 Added mass

4 One bucket missing

TABLE 2.7
CNN Architecture

S. No. Layer Name Layer Size

1 Input 656 x 875 x 3

2 Convolution 1 96 filters of size 11 x 11 x 3

3 Max Pooling 1 2 x 2 with stride 2

4 Convolution 2 128 filters of size 5 x 5 x 48

5 Max Pooling 2 3 x 3 with stride 2

6 Convolution 3 384 filters of size 3 x 3 x 256

7 Max Pooling 3 3 x 3 with stride 2

8 Convolution 4 192 filters of size 3 x 3 x 192

9 Max Pooling 4 3 x 3 with stride 2

10 Convolution 5 128 filters of size 3 x 3 x 192

11 Max Pooling 5 3 x 3 with stride 2

12 Fully Connected Layer 1000

13 SoftMax –

14 Output –
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FIGURE 2.13  CNN model training performance, including (a) accuracy and (b) loss.



42� Data-Driven Fault Diagnosis

FIGURE 2.14  Defect identification accuracy using various classifiers.

FIGURE 2.15  Accuracy achieved using different numbers of convolutional layers.
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2.2.5 �C onclusion for Case 1

This study uses an optimized TVF-EMD method, enhanced by a novel AGWO 
algorithm, for Pelton turbine bucket defect identification. AGWO makes TVF-
EMD adaptive by optimally selecting ξ  and ,n  improving the match with the input 
signal. The key findings are:

	 1.	 TVF-EMD’s time-varying filter (a B-spline approximation filter) improves 
EMD performance by preserving the input signal’s time-varying character-
istics, crucial for effective decomposition. However, improper selection of 
ξ and n can negatively impact results. The proposed AGWO algorithm 
addresses this by adaptively selecting optimal values for these parameters.

	 2.	 This study uses the KEMI as the fitness function for TVF-EMD parameter 
optimization. KEMI also serves as a metric for selecting the most informa-
tive IMF, minimizing information loss.

	 3.	 AGWO’s performance was evaluated against other optimization algorithms 
using 23 benchmark functions, comparing mean and standard deviation. 
AGWO achieved superior results (lowest standard deviation) on 17 func-
tions (F1–F7, F9–F11, F15, F17–F18, and F20–F23). Wilcoxon tests con-
firmed this superiority as statistically significant for 15 functions (F1–F7, 
F9–F11, F17, F19, and F21–F23).

	 4.	 Scalograms, generated from the sensitive IMF, formed the training and test 
datasets for a CNN model. The model achieved 100% accuracy on the 
test data.

FIGURE 2.16  Accuracy in identifying defects obtained through various optimization 
algorithms.
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	 5.	 A comparison of classification accuracy using CNN, with different optimi-
zation algorithms, showed AGWO’s superior performance. Further com-
parison with other learning models demonstrated CNN’s superior accuracy. 
Analysis of CNN architecture indicated that five convolutional layers are 
sufficient for optimal results.

2.3 � FAULT DIAGNOSIS OF BEARING IN PELTON TURBINE 
(CASE 2)

This section describes standard sparse filtering (SF), followed by the introduction 
of a novel feature extraction method: generalized normalized sparse filtering 
(GNSF) combined with Wasserstein distance and maximum mean discrepancy 
(MMD) for fault clustering. GNSF normalizes the feature matrix, while the 
Wasserstein-MMD approach highlights feature contributions. This methodology 
is applied to the Pelton turbine dataset (Chapter 4 provides details).

Vibration data was collected from the drive end bearing of a Pelton turbine 
(Figure 2.17) using a National Instruments data acquisition system. The turbine 
speed was maintained at 1100 and 1200 rpm. Five bearing conditions were stud-
ied: healthy condition (HC), inner race defect with one hole (1-IR), inner race 
defect with two holes (2-IR), outer race defect with one hole (1-OR), and outer 
race defect with two holes (2-OR) (Figure 2.18 and Table 2.8). Each condition 
included 400 samples at a 70 kHz sampling frequency.

2.3.1 �R esults and Discussion

10% of the collected data was used to train the optimized sparse filter for bearing 
health condition diagnosis, with the remaining 90% used for validation. Input and 
output dimensions were set to 100, and the number of principal components 
ranged from 15 to 35. Figure 2.19 shows diagnostic accuracy for various values 
of  ( )= =2, 2 .p q r  Figure 2.20 illustrates results for different q  values 
( )= =0.8and 3 ,p p  indicating high accuracy at = >3(p p q for optimal accuracy). 

FIGURE 2.17  A pictorial view of the Pelton turbine.
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Therefore, p  was set to [1.8, 3.5]. Figure 2.21 supports these findings ( /p q ratios 
of 0.5 and 1.5). Figure 2.22 shows a t-distributed stochastic neighbor embedding 
(t-SNE) visualization of extracted features. Table 2.9 shows the optimal normal-
ization parameters, enabling accurate and stable bearing condition detection 
(Figure 2.23 shows the confusion matrix). Long short-term memory (LSTM) clas-
sifier results (accuracy and loss) are shown in Figure 2.24. These results demon-
strate the effectiveness of the proposed approach for fluid machinery bearing 
defect diagnostics.

2.3.2 �C onclusion for Case 2

A novel unsupervised learning method for Pelton turbine bearing fault diagnosis is 
proposed: GNSF combined with Wasserstein distance and MMD. The method opti-
mizes a generalized − /r p ql  norm objective function to enhance SF regularization. 
Wasserstein-MMD clustering highlights feature contributions. Principal component 
analysis (PCA) preprocessing removes the correlation between training samples, 

TABLE 2.8
Description of Different Health Conditions of the Pelton Turbine

S. No. Fault Condition No. of Samples Condition Label

1 Healthy 400 0

2 1 seeded hole of 1 mm dia. at inner race (1 IR) 400 1

3 2 seeded holes of 1 mm dia. at inner race (2 IR) 400 2

4 1 seeded hole of 1 mm dia. at outer race (1 OR) 400 3

5 2 seeded holes of 1 mm dia. at outer race (2 OR) 400 4

FIGURE 2.18  Different health conditions of the Pelton turbine.
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FIGURE 2.19  Diagnostic results of the Pelton turbine at various values of p with q = 2 
and r = 2: (a) <p q and (b) > .p q
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FIGURE 2.20  Diagnostic results of Pelton turbine using different normalization param-
eters q with r = 2: (a) p = 0.8 and (b) p = 3.
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FIGURE 2.21  Diagnosis results of Pelton turbine at different values of p with r = 2: (a) 
p/q = 0.5 (b) p/q = 1.5.
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FIGURE 2.22  2D visuals of the features using t-SNE at 3 different conditions with r =2.
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TABLE 2.9
Comparative Analysis of Various Sparse Filtering Methods Applied to a Pelton Turbine

Methods
No. of Training 

Samples
No. Health 

States
Computational 

Rime (s)
Standard 

Deviation (%)
Average 

Accuracy (%)

Standard sparse filtering 10 % 5 18.9 0.80 94.93

GNSF without PCA ( )= =2.8, 2p q 10 % 5 42.62 0.25 97.25

The proposed method = =( 2.8, 2,p q  20 PCs) 1 % 5 8.2 0.12 98.12

The proposed method = =( 2.8, 2,p q  20 PCs) 3 % 5 12.9 0.09 99.56

The proposed method = =( 2.8, 2,p q  35 PCs) 5 % 5 17.5 0.05 99.91
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and an LSTM classifier identifies bearing faults. Pelton turbine data validates the 
method’s robustness, leading to the following conclusions:

	 1.	 Optimized SF parameters ensure accurate and reliable results by adaptively 
extracting relevant features from the vibration signal.

	 2.	 Wasserstein distance with MMD is used for feature clustering, highlighting 
each feature’s contribution. Comparison with traditional methods demon-
strates the superiority of this novel approach.

	 3.	 The proposed method effectively identifies centrifugal pump health condi-
tions even with limited training data; for example, achieving 99.91% accu-
racy with only 5% of the samples used for training.

	 4.	 The proposed method uses GNSF to extract discriminative features from 
Pelton wheel vibration data, which are then clustered using Wasserstein 
distance with MMD to facilitate accurate fault classification.

	 5.	 GNSF offers a wider range of normalization parameters, resulting in more 
accurate and robust performance compared to traditional SF.

FIGURE 2.23  Confusion matrix.
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FIGURE 2.24  Training performance of LSTM classifier for Pelton turbine (a) accuracy and (b) loss.
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2.4 � COMPARISON OF METHODOLOGIES PROPOSED IN 
CASES 1 AND 2

While Case 1’s fault diagnosis scheme (for Pelton turbine bucket defects) demon-
strates robustness and superior performance, it requires manual feature extraction. 
In contrast, Case 2’s scheme (for bearing defects) is fully automated. To compare 
these schemes fairly, Case 1’s method was applied to bearing defect data, and 
Case 2’s method to bucket defect data. Table 2.10 presents the resulting accuracy 
and computational times.

Table 2.10 shows that method in Case 1 achieves slightly higher accuracy, 
while method in Case 2 has a shorter computation time.

2.5 � SUMMARY

This chapter investigates two Pelton turbine defect cases: bucket and bearing 
defects. For bucket defects, an AGWO algorithm, using KEMI as the fitness func-
tion, optimizes TVF-EMD parameters. The optimal solution (minimum KEMI) is 
used to generate scalograms for training and testing a CNN classifier. For bearing 
defects, a GNSF method, incorporating Wasserstein distance and MMD for fault 
clustering, is proposed, normalizing the feature matrix to highlight feature 
contributions.

TABLE 2.10
Comparison of Fault Schemes of Cases 1 and 2

Methods

Bucket Defects Bearing Defects

Average 
Accuracy (%)

Computational 
Time (s)

Average 
Accuracy (%)

Computational 
Time (s)

TVF-EMD-AWGO-CNN 100 25.84 100 27.39

GNSF ( = =. ,2 8 2p q , 
35 PCs)

98.52 18.67 99.91 17.5
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Fault Diagnosis of the 
Francis Turbine

3.1 � INTRODUCTION

The Francis turbine is an inward-flow reaction turbine that can achieve efficien-
cies greater than 95% [63]. It consists of a spiral casing, guide vanes, stay vanes, 
runner blades, and a draft tube. Water flows into the spiral casing, moving through 
stay vanes for smoothing and adjustable guide vanes that manage the angle of 
attack on the runner blades. The runner blades have two sections: a lower bucket-
like section (impulse action) and an upper section (reaction force). The runner 
thus utilizes both pressure and kinetic energy. The draft tube recovers pressure 
energy before the tailrace, compensating for the low-energy state of the water 
exiting the runner blades [64–66].

Increased power demands on Francis turbines lead to higher hydraulic forces 
and stresses on components (runners, spiral casing, vanes), potentially causing 
fatigue, misalignment, bearing defects, and cracks [67–69]. Bearing defects are a 
major cause of turbine failure, characterized by quasiperiodic and periodic 
impulses [67–69]. Acoustic signal analysis is a useful contactless method for 
defect detection, particularly beneficial due to the hazardous operating conditions 
and potential for leakage that make accelerometer-based measurements difficult 
[70–73]. However, environmental noise and signal degradation can obscure fault 
features. Blind deconvolution, such as minimal entropy deconvolution (MED) 
[74], can enhance weak fault characteristics. MED, initially used in seismic signal 
processing [74], increases kurtosis for weak impulses while reducing it for noise 
[75]. While MED improves spectral kurtosis (SK) for fault detection [76–78], 
excessive kurtosis can create spurious impulses. Optimal filter length is also cru-
cial. Improvements to MED include replacing kurtosis with skewness [79, 80], 
correlation kurtosis maximum correlated kurtosis deconvolution (MCKD) [81], 
optimal minimum entropy deconvolution adjusted (OMEDA) and multipoint 
OMEDA (MOMEDA) (MOMEDA) [82], minimum entropy deconvolution based 
on impulse norm (MIND) [83], and autocorrelation impulse harmonic to noise 
(AIHN) [84], or optimizing filter coefficients using algorithms such as particle 
swarm optimization (PSO) [85] and ol  norm optimization [86]. These enhanced 
methods have demonstrated improved rotating machinery diagnostics.

Research indicates that improper filter length in MED can transform periodic 
impulses into single pulses, with longer lengths generally leading to higher kurto-
sis values [85–88]. However, a definitive method for filter length selection remains 
elusive with empirical formulas yielding inconsistent results. Li et al. [89] intro-
duced an adaptive MED that employs a modified power spectrum kurtosis (MPSK) 
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index for the diagnosis of wind turbines; however, the outcomes were not ideal, 
and the impact of filter length was not thoroughly investigated. Some studies rely 
on empirical filter length selection without considering its impact on diagnostic 
accuracy [90–92].

This chapter presents a novel automated method for determining optimal MED 
filter length to improve rotating machinery diagnostics, addressing limitations in 
existing approaches. The autocorrelation function, used as an energy measure-
ment index to identify fault-related periodic impulses, guides the filter length 
selection. While various optimization techniques exist [93–95], this study employs 
the Aquila optimizer (AO) [96] to find the optimal filter length, maximizing the 
autocorrelation function. Experiments on a Francis turbine bearing demonstrate 
the method’s effectiveness in enhancing weak fault features in acoustic signals.

3.2 � THEORETICAL BACKGROUND

3.2.1 � Minimal Entropy Deconvolution (MED)

MED seeks to develop an inverse filter based on a typical signal transfer func-
tion [75]. Eq. (3.1) illustrates the vibration signal, ,Nx  obtained from rotating 
machinery.

	 ( )= + ∗Nx p m h
	

(3.1)

where p stands for periodic fault impulses, m signifies noise, h indicates a param-
eter that influences harmonics and transmission, and * represents convolution. 
The process of the MED filter is illustrated in Figure 3.1.

The MED method uses a low-entropy sparse pulse sequence, ,s  as input. The 
MED system increases the entropy of the resulting signal, .x  Deconvolution seeks 
to identify the finite impulse response (FIR) filter, f  (length ),L  such that the fil-
tered output, y, approximates the original input, ,s  as shown in Eq. (3.2).

	

( ) ( ) ( ) ( )
=

= − ≈ = …∑
1

1,2, ,
L

l

y j f l x j l s j j N

	

(3.2)

FIGURE 3.1  Working of MED filter.
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MED is typically implemented using either an eigenvector method or an objec-
tive function method. This research utilizes the objective function method, imple-
mented via kurtosis calculation, as detailed in Eq. (3.3).

	

( ) ( ) ( )
= =

 
   =    

∑ ∑
2

4 2
4

1 1

N N

j j

O f l y j y j

	

(3.3)

To determine the optimal filter, we calculate the first derivative of Eq. (3.3) and set 
it equal to zero. In this context, N  represents the total length of the data set under 
consideration.

	
( ) ( ) ∂ ∂ = 4 / 0O f l f l

	
(3.4)

Eq. (3.2) can also be represented in the form of matrix as

	 = 0
Ty X f 	 (3.5)
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Substituting Eq. (3.3) and Eq. (3.4) into Eq. (3.5) and by further simplification, 
Eq. (3.6) is obtained.
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(3.6)

The procedure followed by the MED filter is as follows:

Step 1: �Initializing ( )= …0 0,1,0, ,0
T

f  and also feed the raw vibration signal x 
in order to obtain 0 .TX

Step 2: �Set the values of filter parameters such as filter length (L), maximum 
iteration ( )maxm  and convergence error ( )ξ .
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Step 3: Using Eq. (3.5), computey ( )my j  by substituting 0
TX  and filter coef-

ficient ( )mf l  in order to get +1mf  through Eq. (5.6).

Step 4: Compute the error ( ) ( )+∆ = −1
4 4

m mE O f O f  utilizing Eq. (3.3).

Step 5: When ξ< ∆ <max andm m E  the iteration using Eq. (3.3) will be con-
tinued otherwise save the final output obtained from Eq. (3.5) and Eq. (3.6).

3.2.2 �I nfluence of Filter Length on Output Results

The three basic components of the signal are represented in Eq. (3.7).

	 ( ) ( ) ( ) ( )= + +x t u t n t h t
	

(3.7)

Figure 3.2(a) illustrates the fault impulse ( ) ,u t  which has a fault sampling interval 
of 30 points. As depicted in Figure 3.2(b), noise ( )n t  is introduced into the fault sig-
nal, with an impulse to noise energy ratio of 0.23. The resulting signal x(t) incorpo-
rates a harmonic component ( ) ( ) ( ) ( )π π π= + +1 2 30.1sin 2 0.2sin 2 sin 2h t f t f t f t , 
where = = =1 2 3

14 2 .15f f f  The final signal comprises 2000 sample points or 
data points.

Figure 3.3 demonstrates the application of MED to the resultant signal using 
filter lengths of = 130L  and = 131.L  When = 130,L  the filtration produces a 

FIGURE 3.2  Simulated signal having fault (a) fault impulse signal ( ),u t  (b) fault impulse 
signal with noise ( ),n t  and (c) resultant signal of ( ) ( ), ,u t n t  and ( ).h t
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single impulse, which is not ideal for diagnosing various faults in rotating machin-
ery. Ideally, a series of periodic pulses representing fault characteristics should be 
obtained. These periodic pulses are clearly visible when = 131.L  It’s important to 
note that changing the filter length by just one unit results in drastically different 
outputs.

These observations underscore the significance of filter length in MED, as it 
directly influences the output. Consequently, selecting the appropriate filter length 
is a crucial step in the MED process. To resolve the issue of single-pulse extrac-
tion, it’s essential to conduct a thorough investigation of the filter length determi-
nation process, as relying on experience alone may lead to inaccurate results.

3.2.3 �O ptimum Filter Length Selection

To improve the MED filter’s capacity to amplify faint periodic impulses, it is nec-
essary to create a fitness function that assesses the periodicity of the filtered sig-
nal. This research utilizes autocorrelation energy to identify the best filter length.

3.2.3.1 � Autocorrelation Analysis
Autocorrelation analysis serves as a useful tool for illustrating how a signal cor-
relates with itself over various time intervals, which makes it highly effective 
for identifying periodic patterns in the signal. Eq. (3.8) illustrates the observed 

FIGURE 3.3  The filtered signals at filter length (a) L = 130 and (b) L = 131.
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signal, wherein ( )s t  indicates a sinusoidal periodic signal, and ( )n t  stands for 
white Gaussian noise.

	 ( ) ( ) ( ) ( ) ( )ω= + = +∅ +0x t s t n t Asin t n t
	

(3.8)

After ( )x t  has been passed through the autocorrelation analysis, it yields:

	
( ) ( ) ( ) ( ) ( ) ( ) ( )τ τ τ τ τ τ = − = + + + x s n sn nsR E x t x t R R R R

	
(3.9)

Here, ( )s t  and ( )n t  are not dependent on each other that is why ( ) ( )τ τ= = 0,sn nsR R  
which results into:
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(3.10)

Here, A represents amplitude, ω0 denotes angular frequency, and ∅ signifies the 
initial phase. The noise is represented by ( ) ,n t  and ( )nR t  is concentrated around 
τ = 0, as illustrated in Figure 3.4. According to Eq. (5.9), the signal in ( )τsR  shares 
the same angular frequency ω0 as ( ).s t  As τ  increases, ( )τxR  primarily reflects 

( )τ ,sR  allowing ( )xR τ  to be used for determining the amplitude and frequency of 

( ) ,s t  as shown in Figure 3.5.

3.2.3.2 � Development of Fitness Function
A key limitation of MED is its use of a fixed filter length for continuous computa-
tion, leading to results dependent on filter length. The fitness function’s main role 

FIGURE 3.4  Autocorrelation analysis of noisy signal.
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is to provide an index quantifying the filtered signal’s periodicity across different 
filter lengths.

For a specific filter length ,L  let Ly  represent the output signal. The remaining 
components of the raw signal can be expressed as:

	 = −L N Ls x y 	 (3.11)

Here, Nx  denotes the unprocessed signal. The fitness function is formulated acc
ording to Eq. (3.12).
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(3.12)

Here, N  represents the data length, and ( ).LyR  and ( ).LSR  represent the output 
and residual autocorrelation functions, respectively. Periodic impulses in the out-
put signal result in periodic autocorrelation. In these situations, MED improves 
the kurtosis of weak impulses while reducing harmonics and noise from the sys-
tem, thereby elevating the energy ratio between the filtered signal and the resid-
ual signal.

Conversely, a single-pulse output signal results in a residual signal dominated 
by noise, except for the main impact. This concentrates autocorrelation amplitude 
near time zero, leading to a lower energy ratio. The value of µL  determines if the 
output constitutes a periodic pulse. To prevent interference, the autocorrelation 
value at time zero needs to be omitted.

FIGURE 3.5  Autocorrelation analysis of observed signal.
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The effectiveness of µL  has been demonstrated using a simulated signal repre-
sented in Eq. (3.7). Figure 3.6 illustrates the computed kurtosis and µL  of the 
output signal at filter lengths ranging from = 2L  to = 500.L  Figure 3.6(a) clearly 
shows that kurtosis increases with filter length, consistent with results presented 

FIGURE 3.6  (a) Kurtosis and (b) fitness function at various filter lengths.



62� Data-Driven Fault Diagnosis

in Ref. [87]. This behavior arises because the MED fitness function maximizes 
kurtosis, a strong indicator of impact characteristics. Nonetheless, ongoing 
impulses in the output signal do not have a direct relationship with changes in 
kurtosis; elevated kurtosis can amplify an individual pulse within the total signal.

Figure 3.6(b) shows the variation of µL  at different filter lengths, initially 
increasing, then decreasing, and finally stabilizing. As demonstrated in Figure 3.3, 
there’s a significant difference in output between filter lengths = 130L  and 
= 131.L  Figure 3.7 presents outputs at filter lengths = 100L , 185, and 186.
The results clearly indicate that a larger µ ,L  the MED filter performs better, 

obtaining strong periodic impact characteristics. However, beyond a certain filter 
length (e.g., = 186),L  µL  decreases continuously, and the output signal exhibits a 
single impulse. At this point, MED becomes insufficient for enhancing periodic 
weak signals. Thus, µL  can serve as a fitness function for selecting the optimal 
filter length for the MED filter.

FIGURE 3.7  Signals at filter lengths of (a) L = 100, (b) L = 185, and (c) L = 186.
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3.2.3.3 � Aquila Optimizer (AO)
The AO algorithm [96] mimics the hunting tactics of the Aquila bird, which 
includes processes such as initialization, evaluating the fitness function, and 
updating solutions. This research applies AO to enhance the Lμ fitness function for 
MED, determining the ideal integer filter length that is shorter than the raw signal 
length. AO’s search strategy involves four approaches: expanded and narrowed 
exploration and expanded and narrowed exploitation, aimed at finding near-opti-
mal and best solutions based on the fitness function. It iteratively adjusts solution 
positions until a specified termination criterion is met.

Figure 3.8 illustrates the effect of population size (20, 40, 60, 80, and 100) on 
the results, analyzing 100 iterations for each size.

Figure 3.8 shows that smaller population sizes yield suboptimal fitness func-
tion ( )µL  values. Increasing the population size increases µ ,L  reaching a maxi-
mum of 0.4867 at L = 159 (similar to Figure 3.6(b)). The relationship between 
population size and µL  is logarithmic, suggesting saturation beyond a certain 
population size. While smaller populations may not maximize µ ,L  some periodic 
impulses might still be detected due to filtering. Since AO consistently seeks an 
“optimal solution,” even with low µL  values (resulting in single-impulse outputs), 
a population size of 100 and 100 iterations were used (Figure 3.9 details the opti-
mal filter length selection).

FIGURE 3.8  Optimal filter length for different populations at 100 iterations.
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The basic steps are as follows:

	 1.	 The AO initialization step sets AO parameters and generates a random pop-
ulation of potential solutions, with encoding length determined by the raw 
signal length.

	 2.	 The µL  metric assesses the quality of each solution within the AO popu-
lation. The exploration and exploitation strategies of AO subsequently 
uncover promising near-optimal and top solutions.

	 3.	 Following N iterations, the algorithm concludes and provides the best solu-
tion identified, which indicates the optimal length of the filter.

The flow chart of the proposed scheme for fault identification is shown in Figure 3.10.

FIGURE 3.9  Procedure for obtaining the optimized filter length.

FIGURE 3.10  Flowchart of the proposed fault detection method.



Fault Diagnosis of the Francis Turbine� 65

3.3 � FAULT DIAGNOSIS OF FRANCIS TURBINE

The proposed method was applied to data from a Francis turbine test rig (Figure 
3.11). The turbine operated at 2350 rpm and 3040 rpm (specifications are shown 
in Table 3.1).

The Francis turbine (refer to Figure 3.11) is made up of a spiral casing, guide 
vanes, stay vanes, runner blades, and a draft tube. The guide and runner blades are 
attached to a shaft that uses UC 206 bearings. Water flows through the spiral cas-
ing, guided by stay and guide vanes (the latter controlling power output by adjust-
ing the angle of attack on the runner blades). Guide vane water impact can cause 
vibrations, leading to potential issues, such as shaft misalignment, runner or vane 
damage, and bearing defects, which are the focus of this study. Five bearing con-
ditions were analyzed: healthy and seeded defects (1 mm diameter spalls created 
via wire electrical discharge machining (WEDM) of one or two spalls on either 
the inner (1-IR, 2-IR) or the outer (1-OR, 2-OR) race (Figure 3.12). UC 206 bear-
ing specifications are detailed in Table 3.2.

Acoustic data from the faulty Francis turbine bearing was recorded using a 
microphone near the bearing, employing a National Instruments 24-bit, four-
channel data acquisition system at a 70 kHz sampling rate. Subsequent analysis 
used 0.1-second segments (7000 data points).

FIGURE 3.11  Test rig of Francis turbine.

TABLE 3.1
Specification of Francis Turbine

Maximum output 3 kW

Maximum discharge 400 l/min
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The inner race defect signal waveforms and their corresponding envelope spec-
tra (1-IR and 2-IR) are depicted in Figure 3.13. The time-domain signals for both 
acoustic measurements, represented in Figure 3.13 (a) and 3.13 (c), exhibit a 
series of periodic pulses. In the envelope spectrum, the ball pass frequency of the 
inner race (BPFI) is observed at 397 Hz, with harmonics appearing at 795 Hz for 
the 1-IR scenario, and at 397 Hz and 2 BPFI (795 Hz) for the 2-IR scenario, as 
illustrated in Figure 3.13 (b) and 3.13 (d). These impulses are masked by consid-
erable background noise, showing a gradual decrease in their amplitude, as dem-
onstrated in Figure 3.13 (a) and 3.13 (c). The envelope spectra in Figure 3.13 (b) 
and 3.13 (d) reveal that the BPFIs are hidden among other frequencies, complicat-
ing the direct extraction of fault information related to inner race defects from the 
acoustic signals.

The proposed method was used to detect inner race-bearing defects in the 
Francis turbine. AO optimization determined an optimal filter length of = 100L  
for single inner race spall defects (1-IR), yielding µ = 0.8187L  (Figure 3.14a). 
Figure 3.14b shows µL  values for various filter lengths, mostly below 1. For two 
inner race spalls (2-IR), the optimal length was = 189L  µ =( 0.6047,L  Figure 
3.14c and 3.14d). Comparing = 100L  and = 140L  (Figure 3.15) highlights the 
method’s benefits: L = 100 produces clear periodic fault impulses with promi-
nent BPFI and harmonics (Fig 3.15b and 3.15d), while = 140L  shows random 
impulses and less-defined BPFI/harmonics (Fig 3.15e and 3.15f). This demon-
strates the importance of determining the optimal filter length.

FIGURE 3.12  Schematic of defective bearings: (a) one spall defect on the inner race 
(1-IR), (b) one spall defect on the outer race (1-OR), (c) two spall defects on the inner race 
(2-IR), and (d) two spall defects on the outer race (2-OR).

TABLE 3.2
Specification of UC 206 Bearing

Type Inner Diameter Outer Diameter No. of Balls Contact Angle

UC-206 30 mm 62 mm 9 0°



Fault Diagnosis of the Francis Turbine� 67

FIGURE 3.13  Time-domain waveform and envelope spectra: (a) waveform of one spall 
defect at inner race (1-IR), (b) envelope spectrum of 1-IR, (c) waveform of two spall 
defects at inner race (2-IR), and (d) envelope spectrum of 2-IR.
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FIGURE 3.14  Selection of optimal filter length for inner race defect. (a) Results of Aquila optimizer for 1-IR optimization, (b) value of µL  for 1-IR, 
(c) results of Aquila optimizer for 2-IR optimization, and (d) value of µL  for 2-IR.
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FIGURE 3.15  Results of inner race faults. (a) Time-domain signal, =100L  (optimized) 
for 1-IR, (b) spectrum of (a), (c) time-domain signal, =189L  (optimized) for 2-IR, (d) 
spectrum of (c) (e), time-domain signal,  for 1-IR (f), and spectrum of (e).

(Continued)
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Outer race defects (1-OR and 2-OR) were also analyzed (Figure 3.16). Figures 
3.16a and 3.16c shows that periodic fault impulses are masked by significant 
noise, with diminishing amplitudes. While ball pass frequency of the outer race 
(BPFO) is visible in Figure 3.16b (1-OR), its harmonics are obscured; for 2-OR, 
BPFO is not discernible in Figure 3.16d. This suggests that signals from the 
Francis turbine in harsh operating conditions are significantly weak.

Figure 3.17 shows the results obtained using the AO at the optimized filter 
length. With an ideal filter length of L = 138, the fitness function µL  is determined 
to be 0.2772 for the case of 1-OR, and 0.1421 for the case of 2-OR, with an opti-
mal filter length of L = 159. Figure 3.18 shows the outputs for both outer race 
faults (1-OR and 2-OR) at the appropriate optimum filter lengths. A continuous 
recording of impulses is shown in Figure 3.18 (a), (b), (c), and (d). The BPFO, as 
well as 2BPFO, 3BPFO, and 4BPFO, are clearly evident in the envelope spec-
trum, which shows rotation modulation. However, as the filter length is increased 
to L = 110, the findings diverge dramatically. The minimum entropy deconvolu-
tion (MED) fails to recover periodic impulses, hence the time-domain signal 
appears as random impulses. Furthermore, the BPFO and its harmonics are unde-
tectable, as seen in Figure 3.18 (e) and 3.18 (f).

Results from the Francis turbine bearing analysis under various conditions 
highlight the importance of optimal MED filter length selection for accurate fault 
detection. The correct length enhances the visibility of periodic impulses; 

FIGURE 3.15  (Continued) Results of inner race faults. (e) time-domain signal, =140L  
for 1-IR, and (f) spectrum of (e).
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FIGURE 3.16  Time-domain waveform and envelope spectra: (a) one spall defect at outer 
race (1-OR), (b) envelope spectrum of 1-OR, (c) two spall defects at outer race (2-OR), and 
(d) envelope spectrum of 2-OR.
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FIGURE 3.17  Selection of optimal filter length for inner race defect: (a) results of Aquila optimizer for 1-OR optimization, (b) value of µL  for 
1-OR, (c) results of Aquila optimizer for 2-OR optimization, and (d) value of µL  for 2-OR
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FIGURE 3.18  Results of outer race faults: (a) time-domain signal, =138L  (optimized) 
for 1-OR, (b) spectrum of (a), (c) time-domain signal, =159L  (optimized) for 2-OR, (d) 
spectrum of (c), (e) time-domain signal,  for 1-OR, and (f) spectrum of (e).

(Continued)
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conversely, an incorrect length impairs MED’s ability to extract meaningful infor-
mation from weak signals, hindering accurate fault diagnosis. The proposed 
method effectively addresses these challenges.

3.4 � COMPARISON OF THE PROPOSED METHOD TO 
EXISTING STATE-OF-THE-ART METHODS

MED performance can be enhanced by: (i) optimizing filter coefficients [85, 86] and 
(ii) substituting different fitness functions for kurtosis [79–84]. The advantages of 
the suggested technique are highlighted when compared to PSO-MED and MCKD.

3.4.1 �C omparison with PSO-MED

The enhanced MED technique that employs PSO converts the filter coefficients 
into generalized spherical coordinates, enabling PSO to determine the optimal 
solution. Reference [85] suggests that PSO-MED is superior to MED, especially 
in situations with a low signal-to-noise ratio. In the comparative analysis, the 
parameters for PSO-MED were configured to correspond to those in Reference 
[85]. Furthermore, in PSO-MED, it is essential to predefine the filter length to 
accurately detect faults in the bearings of the Francis turbine.

The envelope spectrum for signals associated with inner race defects in bear-
ings, particularly 1-IR and 2-IR, is shown in Figure 3.19 after being processed 

FIGURE 3.18  (Continued) Results of outer race faults: (e) time-domain signal, =110L  
for 1-OR, and (f) spectrum of (e).
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FIGURE 3.19  The results of inner race faults after filtering by PSO-MED: (a) time 
domain under 1-IR fault, (b) envelope spectrum of (a), (c) time-domain signal under 2-IR 
fault, and (d) envelope spectrum of (c)
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with PSO-MED. This figure illustrates that while the BPFIs and their harmonics 
are detectable, they are significantly masked by other noise frequencies, leading 
to less pronounced fault characteristics than those depicted in Figure 3.15. The 
outcomes of the PSO-MED method applied to outer race defects, specifically both 
1-OR and 2-OR, are presented in Figure 3.20, which showcases time waveforms 

FIGURE 3.20  The results of outer race fault after filtering by PSO-MED. (a) Time-
domain signal under 1-OR, (b) envelope spectrum of (a), (c) time-domain signal under 
2-OR, and (d) envelope spectrum of (c).
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and envelope spectra. Notable impulses can be recognized in the envelope spec-
trum of Figure 3.20; however, the harmonics are not discernible. These results 
suggest that PSO-MED does not perform adequately in detecting bearing defects 
in signals affected by the demanding operating conditions of the Francis turbine.

PSO-MED attempts to optimize filter coefficients by maximizing signal kurtosis 
using PSO-generated particle sequences to find an “optimal solution.” However, the 
iterative filter coefficient update (Eq. 3.6) is computationally expensive and inac-
curate, resulting in poor performance with the turbine’s challenging bearing signals.

3.4.2 �C omparison with MCKD

McDonald et al. [97] proposed MCKD, an improved MED method using correla-
tion instead of kurtosis as the fitness function, enhancing fault impulse visibility 
and outperforming PSO-MED. However, MCKD struggles with harmonic identi-
fication. Accurate MCKD results depend critically on knowing the fault period, T  
[97], which also influences filter length (Eq. 3.13 [85, 88]) and diagnostic accu-
racy. A better estimate of T  generally leads to a longer filter length.

	
> 2 s

c

f
L

f 	
(3.13)

Here, cf  denotes the resonant frequency of the fault excitation, while sf  represents 
the sampling frequency.

As a result, it is essential to choose the right fault period T and to carry out a fair 
comparison. The value of T  is derived from Reference [22] and is calculated using 
= / BPFIsT f  (or BPFO). Specifically, T  is set at 111 for inner race faults and at 

88.8 for outer race faults. All signals are filtered utilizing the same optimal filter 
length and shift order. The envelope spectrum of MCKD with inner race defects for 
both 1-IR and 2-IR is shown in Figure 3.21. It is clear that MCKD can only identify 
a single BPFI with a faint peak, without any harmonic presence or rotational modu-
lation. Figure 3.22 illustrates the time-domain signal and envelope spectrum for 
both 1-OR and 2-OR defects as processed by MCKD. Although the time-domain 
signal lacks distinct impulses, the envelope spectrum displays BPFO intertwined 
with noise. A comparison between PSO-MED and MCKD indicates that MCKD 
performs better for inner race defects, whereas PSO-MED excels with outer race 
defects. Nevertheless, the proposed method outperforms MCKD in detecting peri-
odic impulses with notable amplitude and in extracting BPFI and BPFO harmonics.

Table 3.3 compares the proposed method, PSO-MED, and MCKD in terms of 
percentage error and computation time. The proposed method shows lower error 
and computation time than both PSO-MED and MCKD. While conventional 
MED, PSO-MED, and MCKD only detected defect frequencies, the proposed 
method identified both defect frequencies and their harmonics.

The proposed algorithm was executed using MATLAB R2019a software, 
while LabVIEW 2020 was employed as the interface for data acquisition. The 
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FIGURE 3.21  The results of the inner race fault after filtering by MCKD. (a) Time-
domain signal under 1-IR fault, (b) spectrum of (a), (c) time-domain signal under 2-IR 
fault, and (d) spectrum of (c).
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FIGURE 3.22  The results of outer race fault after filtering by MCKD. (a) Time-domain 
signal under 1-OR, (b) spectrum of (a), (c) time-domain signal under 2-OR, and (d) spec-
trum of (c).
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TABLE 3.3
Comparison of Results of the Proposed Fault Identification Scheme with  
Other Existing Schemes

Signal 
Processing 
Scheme Defect Type RPM

Fault 
Frequency 
Obtained 

after 
Processing 
Signal (Hz)

Percentage 
Error 

in Fault 
Frequency 

(%)
Computational 

Time (sec)

Conventional 
MED

One seeded defect 
on the inner race 
(1-IR)

3040 400 0.6220 20.12

Two seeded defects 
on inner race (2-IR)

3040 399 0.3705 17.27

One seeded defect on 
outer race (1-OR)

3040 255 2.3729 21.21

Two seeded defects 
on outer race 
(2-OR)

3040 256.12 1.9441 19.84

PSO-MED One seeded defect on 
inner race (1-IR)

3040 397 0.1325 18.54

Two seeded defects 
on inner race (2-IR)

3040 396.12 0.3539 17.63

One seeded defect on 
outer race (1-OR)

3040 260.52 0.2595 17.82

Two seeded defects 
on outer race 
(2-OR)

3040 261.14 0.0222 15.42

MCKD One seeded defect on 
inner race (1-IR)

3040 396.5 0.2583 19.73

Two seeded defects on 
inner race (2-IR)

3040 397.92 0.0988 17.97

One seeded defect on 
outer race (1-OR)

3040 260.01 0.4548 17.13

Two seeded defects 
on outer race 
(2-OR)

3040 262 0.3070 16.57

Improved 
MED 
using auto 
correlation 
energy and 
Aquila 
optimizer

One seeded defect on 
inner race (1-IR)

3040 397.5 0.0067 14.41

Two seeded defects 
on inner race (2-IR)

3040 397.52 0.0017 13.92

One seeded defect on 
outer race (1-OR)

3040 261.197 0.0003 13.71

Two seeded defects 
on outer race 
(2-OR)

3040 261.20 0.0007 12.79
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machine was configured with an AMD Ryzen 5 4600 H processor featuring 
Radeon graphics, operating at 3 GHz and equipped with 8 GB of RAM. It ran on 
a 64-bit Windows 10 operating system.

The MED is a FIR filter, widely used for blind deconvolution. Setting the filter 
length correctly is essential before utilizing the MED. Results from simulated and 
test signals indicate that even a difference of 1 in filter length can yield entirely 
different outputs, highlighting the significant impact of the chosen filter length on 
the MED results. Numerous researchers have sought to enhance the performance 
of the MED filter [79–84], achieving notable results; however, the filter length still 
needs to be predetermined. An index, ( )µ ,L  has been developed to assess the effect 
of periodic pulses on the output signal from the MED filter and to minimize the 
influence of single pulses as much as possible. Findings from various bearing 
health conditions of the Francis turbine demonstrated that using an optimized fil-
ter length can effectively mitigate the adverse effects of a noisy environment.

The superiority of the suggested method can also be demonstrated using an 
index referred to as the characteristic frequency of the envelope ( ) ,efC  which is 
effective in distinguishing between various fault levels. Previous literature has 
utilized similar indexes to evaluate the capabilities of various methods, as refer-
enced in [83–86]. The characteristic frequency of the envelope ( )efC  can be calcu-
lated using the following equation:
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Here, ( )A f  at frequency f  in the envelope spectrum represents the amplitude. 
N  stands for the spectrum’s spectral lines, M for the multiple of ffault, which in 
this study is set to 3, and faultf  for the fault frequency. With the search bandwidth 
covering the range [–5, 5], the value of N  is set at 500. As shown in Figure 3.23, 
the characteristic frequency of the envelope efC  of the suggested method has been 
contrasted with that of the PSO-MED and MCKD methods. This comparison led 
to the following conclusions:

	 a.	 The severe vibration environment that exists during Francis turbine opera-
tion greatly reduces the bearing’s fault characteristics under a variety of 
health circumstances. The 1-IR, or spall defect at one point on the inner 
race, is the least prominent of the several fault modes, whereas the 2-OR, or 
spall faults at two sites on the outer race, is the most noticeable.

	 b.	 The suggested approach successfully addresses the difficulties presented 
by the highly vibrating environment and extracts the fault characteristics of 
faulty bearings, which are frequently hidden by a lot of noise. According 
to the comparison, the suggested approach performs better than PSO-MED 
and MCKD in detecting the signals connected to the Francis turbine’s faulty 
bearings.



82� Data-Driven Fault Diagnosis

3.5 � CONCLUSION

This research introduces an innovative fault detection method utilizing an AO to 
enhance the MED filter’s performance. The approach employs autocorrelation 
energy as a fitness function, enabling optimal filter length determination to accu-
rately identify periodic impulses. The technique has been successfully applied to 
Francis turbine-bearing acoustic signals, where challenging conditions and noise 
often obscure fault indicators. The proposed method effectively amplifies weak 
periodic impulses and has been benchmarked against PSO-MED and MCKD. It 
accurately detects fault frequencies for various bearing defects (1-IR, 2-IR, 1-OR, 
and 2-OR) with minimal percentage errors (0.0067, 0.0017, 0.0003, and 0.007, 
respectively) and efficient computation times (14.41, 13.92, 13.71, and 12.79 
seconds, respectively). Comparative analysis demonstrates the superiority of this 
technique in extracting subtle defect characteristics over existing methods.

3.6 � SUMMARY

This chapter focuses on the study that used sound signals to investigate bearing 
issues in the Francis turbine. To accomplish this, a measurement index called 
autocorrelation energy has been created. This index serves as a fitness function 
when the MED filter length is optimized using the AO. The suggested technique 
helps to strengthen the weak periodic impulses that are present in the turbine’s 
difficult operating circumstances.

FIGURE 3.23  Output of efC  index for failure modes.
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4.1 � INTRODUCTION

Hydraulic pumps play a crucial role in various sectors, including agriculture, 
industry, and domestic applications [36, 98, 99]. Centrifugal pumps, in particular, 
require careful monitoring to prevent mechanical failures during continuous oper-
ation. These pumps can experience three main types of faults: mechanical-
induced, system-related, and operational. Mechanical faults involve component 
failures such as impeller damage [100], bearing issues [101, 102], and shaft mis-
alignment [103]. System faults are associated with improper installation and leak-
age, while operational faults include blockages, cavitation, and erosion [104, 
105]. This research concentrates on mechanical-induced faults, specifically those 
affecting impellers and bearings. Condition-based monitoring (CBM) is employed 
to evaluate the health of rotating components by analyzing measurable parame-
ters. When these parameters deviate from normal behavior or decline, the diag-
nostic system is activated, prompting maintenance actions once predetermined 
thresholds are exceeded. For rotating machinery, CBM typically involves moni-
toring vibration, acoustic emission, sound, or pressure signals. In this study, the 
focus is on vibration-based condition monitoring to diagnose impeller and bearing 
defects in centrifugal pumps.

4.2 � DIAGNOSIS OF IMPELLER DEFECT IN CENTRIFUGAL PUMP 
(CASE 1)

A centrifugal pump generates a pressure head through its rotating impeller and 
involute casing. The impeller is attached to a shaft that is supported by bearings. 
As the impeller rotates, it creates velocity, which is then transformed into pressure 
by the casing. Various factors can lead to malfunctions in the impeller, including 
corrosion caused by reactive chemicals, erosion due to solid slurry particles, met-
allurgical defects, cavitation, and lack of proper lubrication [99, 106].

The vibration signals collected for monitoring may contain noise, which needs 
to be eliminated for an accurate fault analysis. To find centrifugal pump problems, 
researchers have been actively examining sophisticated signal processing and 
machine learning approaches [101–103]. For example, Azizi et al. [107] classified 
the findings using a generalized regression neural network (GRNN) after utilizing 
empirical mode decomposition (EMD) to determine the degree of cavitation in cen-
trifugal pumps. The genetic algorithm support vector machine (GA-SVM) model 
was created by Kumar and Kumar [108] to categorize different flaws using features 

Fault Diagnosis of the 
Centrifugal Pump

4

http://dx.doi.org/10.1201/9781003614821-4


84� Data-Driven Fault Diagnosis

that were taken from the scale marginal integration (SMI) signal as well as the raw 
signal. Although the genetic algorithm showed promise in fault prediction, it had 
drawbacks, including a sluggish rate of convergence and the ability to become 
stuck in local minima. Additionally, Kumar et al. [109] employed symmetric cross-
entropy of neutrosophic sets to diagnose defective bearings in an axial pump.

Variational mode decomposition (VMD), introduced by Dragomiretskiy, 
breaks down a signal into intrinsic modes, with the center frequency being calcu-
lated in real time, allowing the extracted modes to synchronize accordingly [110]. 
He demonstrated that VMD outperforms EMD in tone detection and separation. 
Using a cross-entropy measurement index, Kumar et al. [68] applied the VMD 
technique to find centrifugal pump problems. VMD was used by Zhang et al. 
[105] to break down signals in order to identify bearing problems in a multistage 
centrifugal pump. Mode number and quadratic penalty factor are two examples of 
VMD parameters that are commonly determined by experience, which can have a 
substantial effect on VMD’s performance and can lead to erroneous decomposi-
tion results. For VMD-based decomposition to be effective, the ideal parameter 
combination must be determined.

To optimize VMD settings, a variety of optimization strategies have been used. 
Swarm intelligence (SI) techniques stand out among these because they are mod-
eled after the collective behavior of various creatures, including schools of fish, 
ants, and flocks of birds, and are inspired by natural events [111]. Gravitational 
search algorithms (GSA), particle swarm optimization (PSO), sine cosine algo-
rithms (SCA), hybrid genetic algorithms and particle swarm optimization 
(HGPSO), ant colony optimization (ACO), whale optimization algorithms 
(WOA), grey wolf optimizers (GWO), and grasshopper optimization algorithms 
(GOA) are a few examples of SI approaches. These methods are used for different 
optimization problems [50, 112].

This chapter presents ASSA that utilizes opposition and position updating to 
develop an adaptive VMD technique, applied to vibration signals for detecting 
defects in centrifugal pumps. By efficiently expanding the starting population size, 
the proposed technique not only speeds up convergence but also cuts down calcu-
lation time. This approach reduces the likelihood that the algorithm would stall 
when attempting to find the optimal set of VMD decomposition parameters. The 
sensitive mode for faulty feature extraction is chosen using the weighted kurtosis 
index. Additionally, the extracted features are ranked using the Pearson correlation 
coefficient (PCC) technique, which reduces data redundancy and determines each 
feature’s impact on the signal. An extreme learning machine (ELM) is then trained 
using the chosen characteristics to assess testing and training accuracy.

4.2.1 � Theoretical Background

4.2.1.1 � Variational Mode Decomposition (VMD)
VMD is a signal processing method that breaks down the raw vibration signal into 
intrinsic modes ,ku  which maintains a sparsity with the original signal. Each mode 
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is expected to be centered around a specific frequency .kw  The corresponding 
sparse-mode ku  is selected as the bandwidth in the frequency domain, as described 
in [110, 113]. To determine the mode bandwidth, the following steps are executed: 
(1) each mode, ,ku  is derived using the Hilbert transform to generate its frequency 
spectrum, (2) the frequency spectrum of each mode is exponentially shifted to the 
“baseband” in relation to its central frequency, and (3) the bandwidth of the fre-
quency is then estimated using the ( )2L  norm of the gradient. This decomposition 

process is conducted according to [110].
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where ( )f t  denotes an input signal, while { }ku  indicates a distinct set of modes 
and { }kw  represents the central frequency. The Dirac distribution ∂t  signifies 
convolution. The penalty factor α  serves as the data fidelity constraint, and the 
Lagrangian multiplier λ is employed to impose this constraint, allowing the 
optimization problem outlined in Eq. (4.1) to be transformed into an uncon-
strained form. The augmented Lagrangian L is expressed in the following 
equation:
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The alternate direction method of multipliers (ADMM) addresses the aforemen-
tioned minimization issue (augmented Lagrangian )L  to find the saddle point and 
generates a series of suboptimizations. By leveraging the solutions from these 
suboptimizations, ADMM directly optimizes the problem in the Fourier domain, 
as referenced in [110]. The complete algorithm is outlined in [110]. The values of 

ku  and kw  are updated in accordance with the ADMM optimization problem dur-
ing processing. Equation (4.2) updates the variational mode function (VMF) con-
cerning ,ku  and following this update of the VMF, the suboptimal problem is 
expressed as follows:
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The optimal solution to the quadratic equation presented in Eq. (4.3) can be con-
veniently determined using the Fourier transform in the frequency domain, with 
the filter adjusted to the central frequency. Subsequently, Eq. (4.4) updates the 
values of the modes ˆ .ku

	
( )

( ) ( ) ( )

( )
+ ≠

− +
=

+ −

∑1 k
2

2
1

ˆ

2

ˆ
ˆ

ˆ
i

n i
k

k

w
f w u w

u w
w w

λ

α 	

(4.4)

Filtering is performed on the current residual in conjunction with the signal prior 
to applying ( )−

2
1 / kw w  using a Wiener filter, and the mode ku  is updated in accor-

dance with Eq. (4.4). Hermitian symmetric completion is used to derive the spec-
trum of each VMF ( ).ku  The real part of the inverse Fourier transform of the 
filtered signal yields the modes ku  in the time domain. Eq. (4.2) is optimized with 
respect to kw  to ensure that the central frequency does not affect reconstruction 
fidelity. The relevant problem is referenced from [110].
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Upon resolving the aforementioned suboptimization problem, the result for the 
central frequency is obtained as follows:
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The central frequency kw  is updated based on the center of gravity of the power 
spectrum of the corresponding mode, as indicated in Eq. (4.6).

The aforementioned equations indicate that four parameters—namely, mode 
number (K), quadratic penalty factor ( ) ,α  tolerance (τ), and convergence criterion 
(ϵ)—are essential for the VMD procedure and must be defined ahead of time. The 
parameters τ and ϵ typically use their default values from the original VMD, as 
they have minimal impact on the decomposition outcomes. However, the mode 
number K should not be predetermined without prior knowledge of the signal 
being analyzed, as its appropriateness cannot be assessed, which may affect the 
accuracy and efficiency of the decomposition results. The quadratic penalty factor 
α  helps suppress noise interference in the signal and regulates the frequency band-
width, necessitating careful selection. Therefore, finding the optimal combination 
of these parameters is crucial for VMD and serves as the motivation for this work.
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4.2.1.2 � Extreme Learning Machine (ELM)
Huang et al. [114] introduced the ELM for applications in both regression and 
classification. The ELM is built on a single-layer feedforward network (SLFN), as 
illustrated in Figure 4.1. It comprises three layers: the input layer, the hidden 
layer, and the output layer. For M arbitrary samples ( )∈, X ,n m

j jX t R R  the SLFN 
with L hidden nodes and an activation function ( ), ,i i iG Xα β  is mathematically 
represented as shown in Eq. (6.7) [114]:
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Here, iα  and ib  are the learning parameters associated with the hidden nodes, 
where iα  connects the weight vector of the input nodes to the ith hidden node, and 

ib  represents the threshold for the ith hidden node. Additionally, iβ  signifies the 
output weight, and jt  indicates the test point, while the activation function 
( ), ,i i iG Xα β  produces the output for the ith hidden node. This equation can also 

be expressed in matrix form as follows:

	 =H Tβ 	 (4.8)

FIGURE 4.1  Extreme learning machine (ELM) structure.
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and
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According to ELM theories, the values of iα  and ib  are assigned randomly for all 
hidden nodes rather than being adjusted through tuning. The solution to the pre-
ceding equation is estimated by

	
∗= H Tβ 	 (4.11)

where H∗  represents the inverse of the output matrix H, and the Moore–Penrose 
generalized inverse is employed for this purpose. The procedures included in the 
ELM algorithm are summarized as follows:

Step 1: The hidden nodes’ learning parameters, iα  and ,ib  are assigned 
at random.

Step 2: It is necessary to compute the hidden layer’s output matrix .H
Step 3: The Moore–Penrose generalized inverse is used to calculate the inverse 

of the hidden layer output matrix.

4.2.2 � Proposed Scheme

To enhance the analysis of vibration signals for pump fault detection, a VMD 
process is proposed. This adaptation is achieved by optimizing the VMD’s param-
eters, specifically the mode number K and the quadratic penalty factor, through a 
specialized search rule. This rule relies on two primary criteria: a measurement 
index to evaluate the quality of the VMD results and an efficient search method. A 
refined salp swarm algorithm (SSA), incorporating opposition-based learning and 
position updating, is developed as the search method to effectively identify the 
optimal parameter combination. Furthermore, to accurately locate the sensitive 
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mode within the decomposed signal, a new measurement index, weighted kurto-
sis, is introduced. This index improves upon traditional kurtosis by incorporating 
the correlation coefficient and considering density distribution, thus providing a 
more comprehensive evaluation. Following the identification of the sensitive 
mode, relevant features are extracted and utilized by an ELM to enable automated 
fault detection in the pump.

4.2.2.1 � Weighted Kurtosis Index
The measurement index is a crucial component in making VMD adaptive, as it 
assesses the effectiveness of the decomposition results. Previous research has indi-
cated that kurtosis and correlation coefficients are two significant indices for diag-
nosing faults in rotating machinery using vibration signals [115]. The kurtosis index 
primarily depends on the density distribution of the impacts caused by faults [116]. 
Utilizing maximum kurtosis alone to optimize VMD parameters can be problematic 
because it may fail to detect impactful events with high amplitudes if their density 
distribution is spread out. While the correlation coefficient offers a rapid assessment 
of signal similarity, its vulnerability to noise, particularly in signals from faulty com-
ponents, limits its reliability [115]. To overcome the limitations of relying solely on 
maximum kurtosis or the correlation coefficient, a combined metric, the weighted 
kurtosis index, is proposed. This hybrid index will function as the fitness function, 
guiding the optimization process to determine the most effective VMD parameters 
[117]. The following Eq. (4.12) represents the weighted kurtosis index (KCI).

	 = .KCI KI C 	 (4.12)

where KI  represents the kurtosis index for input signal ( )x n  and is expressed as
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where the length of the signal is given by N . Considering   .E  a mathematical 
expectation, the correlation C  between x and y is expressed as
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4.2.2.2 � Ameliorated Salp Swarm Algorithm for Optimizing VMD  
Parameters

Mirjalili et al. [118] introduced the SSA, an optimization method rooted in SI. This 
technique emulates the foraging patterns of salps or chains of salps in the deep 
ocean. Within SSA, the initial random population is divided into two groups: 
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leaders and followers, facilitating the creation of the mathematical model of the 
salp swarm [118]. The leader directs the salp chain, while the followers move 
behind the leaders. The basic principles of SSA and the Enhanced Salp Swarm 
Algorithm (ASSA) proposed in this study are detailed in the following subsec-
tions, along with explanations for the modifications made to SSA. Shared pro-
cesses such as population initialization, function evaluation, and swarm division 
are relevant to both SSA and ASSA. To improve SSA’s convergence speed, oppo-
sition-based learning is utilized. The approach for updating the positions of both 
leaders and followers is refined through various equations, which are detailed in 
the relevant subsections to thoroughly develop ASSA.

	 A.	 Initialization of population
To begin, the population is randomly generated within the search space 
using a uniform distribution, as demonstrated in Eq. (4.15).

	 ( ) ( )= + − = … = …min max min ; 1,2, , ; 1,2, ,ij j ij j jx x r x x i NP j D
	

(4.15)

where NP represents the number of populations, D signifies the dimension 
of the search space, minx  denotes the lower bound of the search space, maxx  
indicates the upper bound, and ijr  is a uniformly generated random number 
within the range (0,1).

	 B.	 Opposition-based learning
Nature-inspired optimization algorithms typically begin with random initial 
guesses for potential solutions across a defined search space. However, this 
random initialization can lead to lengthy computation times. To mitigate 
this, an approach known as opposition-based learning can be employed. 
Instead of solely relying on random guesses, each initial solution is paired 
with its “opposite” counterpart, and the fitness of both is evaluated. The 
superior solution, whether the original random guess or its opposite, is then 
selected as the starting point. This strategy, by initializing with closer 
approximations and validating them against the fitness function, effectively 
reduces computation time and accelerates convergence. This technique is 
applied consistently across the initial population and has been integrated 
into the fundamental SSA, where the population initialization utilizes this 
opposition-based learning framework.

	 = + −max min
ijo j j ijx x x x 	 (4.16)

 where ijox  represents the salp population from opposition-based learning.

	 C.	 Function evaluation
The fitness of the swarm is assessed using Eq. (4.16). Subsequently, the 
optimal function value, ( )bF i , is derived mathematically and expressed as
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	 ( ) ( )( ){ }= minbF i F x i
	

(4.17)

where = …1,2, ,i NP
The best salp position is saved corresponding to the best function value, ( )bF i .

	 D.	 Dividing the swarm
The entire swarm is segmented into two groups known as leaders and fol-
lowers. The proportion of leaders can range from 10% to 90%, as indicated 
in [118]. In this research, the leaders and followers are divided equally, 
meaning they are assigned the same percentage.

	 E.	 Update the position of the leader
Similar to other swarm-based optimization methods, the position of each 
salp serves as a candidate solution stored in a two-dimensional matrix 
referred to as X for an m-dimensional search problem, where m represents 
the number of design variables. Within the search space, the optimal posi-
tion corresponds to the best food source, denoted as F . The positions of the 
leaders are updated according to Eq. (4.18).
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where 1
jX  denotes the position of the leader (first salp), P  is the probability 

used to determine the leader’s position, and jF  represents a food source in 
the jth dimension. jub  and jlb  are the upper and lower bounds, respectively, 
for the jth dimension. The variables 1,c  2,c  and 3c  are random values, with 1c  
playing a crucial role in balancing exploitation and exploration. The defini-
tion of 1c  is provided in Eq. (4.19) as follows:
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where k represents the current iteration and L denotes the maximum num-
ber of iterations. The random variables 2c  and 3c  are generated uniformly 
within the range of 0 and 1. The probability P  is defined in Eq. (4.20) as 
follows:

	 ( )= −tanhP S i DF 	 (4.20)

where ( )S i  represents the fitness of ,ijx  while DF signifies the best fitness 
achieved across all iterations. Eq. (4.19) has been introduced as a modifica-
tion that facilitates the updating of the leaders’ positions.
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	 F.	 Update the position of the followers
The follower position is updated according to Eq. (4.20), which is based on 
Newton’s Law of Motion.

	
( )( )−= − + 11
1

2
i i i
j j jX X Xα α

	
(4.21)

 where ≤ ≤2 i L, i
jX  indicates the position of thi  follower in the salp chain of 

thj  dimension. And α is the weighting factor defined in Eq. (4.22)

	 ( )= −var1,var1randα 	 (4.22)

where
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Eqs. (4.22) and (4.23) are incorporated in Eq. (4.21) as modifications in the 
basic salp swarm which updates the follower’s position.

Pseudocode of the ASSA Algorithm is presented in the following manner.

      Initialize the salp population NP1 ijx  using Eq. (4.15).
      �Apply opposition-based learning on this initial population to get NP2 

members.
      Calculate objective function on NP1 and NP2 using Eq. (4.25).
      Select best NP members out of (NP1+NP2).
       �Select members, ( )xbest j  with best function value and designate as  

.gbest
      while ( )≤l L
      Calculate the objective function of each individual.
      Update 1c  by Eq. (4.19)
                 for i = 1: size of salp population
                             if i <= half of the salp population 
                             generate 2c  and 3c  randomly within [0,1]
                             calculate the value of P using Eq. (4.20)
                             update the position of the leaders using the Eq. (4.18) 
                                         else if i > half of the salp population
                                         generate the variable var1 using Eq. (4.23)
                                         create α using Eq. (4.22)
                                         �update the position of the follower using  

Eq. (4.21)
                                         end
                             end
                 updated salp position
                 end
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      amend the salps based on upper and lower bounds of variables.
      evaluate the objective function on the updated salp position
      update the value xbest and gbest
end

4.2.2.3 � Pearson Correlation Coefficient-Based Feature Ranking
In the context of large datasets, filter-type algorithms are typically employed to 
rank the features. A feature filter is essentially a function of correlation or infor-
mation that returns the relevant index ( | , )J S D C  [119]. This index evaluates the 
relevance of a given feature subset (S) for the task (C), which can involve either 
classification or approximation of the data D. The relevant index is computed for 
each individual feature ,iX  where = …1 ,i N  to establish the ranking order 
( ) ( ) ( )≤ … ≤1 2 . .Ni i iJ X J X J X  Features with the lowest ranks are typically filtered 

out. The PCC is one method used to determine the rank of features based on cor-
relation measurement [119]. The PCC is expressed as follows:
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where X represents a feature with value ,x  and class C  is a class containing values .c  
If ( ),e X C  is ± 1, then X and C  are considered dependent; conversely, if ( ),e X C  is 

zero, X and C are uncorrelated. The error function ( ) ( )( )=~ , / 2P eX C erf X C N  

is utilized to calculate the probability that two variables are correlated. Decreasing 
values of the error function ( )~P X C  indicate feature ranking and organize the 
feature list accordingly.

4.2.3 � Fault Identification Approach

This chapter introduces a parameter-adaptive VMD technique, driven by an 
ASSA. The ASSA utilizes the maximum weighted kurtosis, as defined in Eq. 
(4.25), as its fitness function to optimize VMD parameters. To improve the algo-
rithm’s performance, opposition-based learning is integrated into the original 
SSA, leading to the development of ASSA. Since the optimization aims to mini-
mize the fitness function, the maximization problem inherent in the weighted kur-
tosis is transformed into a minimization problem by negating the fitness function, 
as shown in Eq. (4.25). Furthermore, the study proposes a feature ranking method 
based on the PCC to determine feature relevance for fault diagnosis. Finally, these 
ranked features are used to train and test an ELM for accurate fault detection.
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where iKCI  (for = …( 1,2, , ))i K  represents the weighted kurtosis for the decompo-
sition modes of VMD. The parameters ( ),kυ α  are those of VMD that need opti-
mization. The mode number k varies within the interval [2, 7], while the quadratic 
penalty factor α  takes values within the range [1000, 10000]. The parameter 
ranges have been determined based on a comprehensive literature review.

The detailed steps of the proposed methodology are outlined below:

	•	 The acquired vibration signal is the input into VMD using the specified 
ranges of parameters that require optimization. The value of the objective 
function is stored for each iteration.

	•	 Initialize the parameters of the ASSA using a population size of N and set-
ting the maximum number of iterations to L.

	•	 Retrieve the modes following the decomposition of the vibration signal 
using VMD. Next, calculate the objective function for each mode.

	•	 If ≥l L, then the desired condition is met, and the iteration concludes. 
Otherwise, increment l by 1 and continue the iteration.

	•	 Maintain the set of ideal parameters determined by the goal function’s low-
est value. Furthermore, keep track of the sensitive mode, which is the mode 
linked to the highest weighted kurtosis index.

	•	 The PCC is used to rate the distinguishing traits when they are taken out of 
the sensitive state. After that, the data is saved.

	•	 To assess the model’s accuracy during testing and training, the resulting 
data is fed into the ELM.

A flow chart of the process is given in Figure 4.2.

FIGURE 4.2  Flowchart for adaptive VMD method for fault identification in the centrifu-
gal pump.
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4.2.4 �E xperimentation

4.2.4.1 � Test Rig
The centrifugal pump test rig is the source of the experimental dataset. The sche-
matic diagram and visual representation of the pump test rig are shown in Figure 
4.3(a) and 4.3(b), respectively. The pump runs at a speed of 2800 rpm or 46.67 Hz. 
Table 4.1 contains the pump’s detailed specifications. Two bearings support the 

FIGURE 4.3  (a) Schematic of centrifugal pump test rig and (b) a typical photograph of 
centrifugal pump test rig with an accelerometer placed for data acquisition.
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pump shaft: Bearing 1, which is located closer to the impeller and is designated 
6203-ZZ, and Bearing 2, which is located farther away from the impeller and is 
designated 6202-ZZ. The impeller, which is housed in a casing and positioned on 
the rotor shaft, has vanes that, when rotating, pull water axially through the impel-
ler’s eye. By doing this, the water is given kinetic energy, which allows it to flow 
outward radially through the casing and transform it into potential energy, or head.

4.2.4.2 � Data Acquisition
The vibration signals are collected using a uniaxial accelerometer with a sensitivity 
of 100 mV/g, which is mounted near the impeller casing, as depicted in Figure 
4.3(b). A National Instruments 24-bit, 4-channel data acquisition (DAQ) system is 
utilized to capture the vibration signals, operating at a sampling frequency of 70 
kHz. 7000 data points, covering 0.1 seconds, are evaluated. As shown in Figure 4.4, 

TABLE 4.1
Specification of Centrifugal Pump

Power supply 230/240 V

Motor power 0.5 Hp

Discharge 1.61 litre/s

Impeller type Closed

Impeller diameter 118.88 mm

Impeller vanes 3

FIGURE 4.4  Different operating conditions: (a) clogging, (b) blade cut, and (c) wheel cut.
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the study is conducted under a variety of impeller settings. The adaptive VMD 
approach is used to process the raw signal obtained from the centrifugal test rig. 
The modified salp swarm technique is used to optimize the two main parameters 
of VMD, the mode number K, and the quadratic penalty factor .α  Other VMD 
parameters are used as recommended in [110]. The ideal set of VMD parameters 
is determined using the suggested ASSA algorithm. With these ideal pairings, the 
maximum weighted kurtosis is used to determine the most important mode, which 
is then processed for additional examination.

First, data is collected for a pump with a normal (defect-free) impeller installed 
that runs at 2800 rpm (corresponding to an operational frequency of 46.67 Hz). In 
every impeller situation under investigation, the pump keeps its speed constant. 
Figure 4.5(a) displays the raw time-domain signal for the impeller condition with-
out defects. After that, this signal is converted into the frequency domain, as 
shown in Figure 4.5(b), where the 47 Hz characteristic frequency which corre-
sponds to the operating frequency of the pump is emphasized. Under all health 
conditions, the pump runs at a constant rpm, and hence the Fast Fourier Transform 
(FFT) related to the operating frequency is constant. The adaptive VMD approach, 
which is based on the ASSA, breaks down the raw signal into different modes. 
The quadratic penalty factor α  and the mode number K are found to be 3 and 
1000, respectively, based on the ASSA. Figure 4.5(c) provides illustrations of the 
various modes. Every mode’s weighted kurtosis is determined; the third mode 
yields the highest weighted kurtosis value, 12.73, and is chosen for feature extrac-
tion. Twenty signals in all are examined in the following scenarios: wheel cuts, 
clogging, blade cuts, and no defect.

Similar to the analysis for the defect-free condition, adaptive VMD is also used 
to deconstruct the data gathered under blocked impeller conditions into several 
modes. ASSA optimizes this process by applying a quadratic penalty factor α of 
4000 and a mode number K of 3. The three options in this case produce weighted 
kurtosis values of 1.95, 3.08, and 1.99; the third mode, with the greatest weighted 
kurtosis value, is selected for additional processing. Figure 4.6(a) shows the time-
domain signal, Figure 4.6(b) shows the frequency-domain signal, and Figure 
4.6(c) shows the decomposed modes.

Figure 4.7(a) displays the blade cut impeller condition’s raw signal, and Figure 
4.7(b) displays the matching frequency domain signal. For this signal, the optimal 
K and α  parameter values are found to be 3 and 1000, respectively. As illustrated 
in Figure 4.7(c), the raw signal is broken down into three modes using these 
parameters. The first, second, and third modes have weighted kurtosis values of 
1.62, 1.60, and 8.62, respectively. In this instance, the third mode is also chosen 
for additional examination because it has the highest weighted kurtosis value.

The wheel-cut impeller situation is handled in the same way. Figure 4.8(a) 
displays the time-domain signal, and Figure 4.8(b) displays the equivalent fre-
quency-domain signal. It is discovered that 3 and 2000 are the ideal parameter 
combinations for the mode number and penalty factor, respectively. Figure 4.8(c) 
shows the three resultant modes. The first, second, and third modes have weighted 
kurtosis values of 1.54, 3.87, and 11.63, respectively. The prominent mode is 
determined to be the one with a weighted kurtosis of 11.63.



98� Data-Driven Fault Diagnosis

4.2.4.3 � Feature Extraction
A total of 80 prominent modes (20 for each condition: healthy (no defects), 
clogged, blade cut, and wheel cut impeller conditions) are obtained from the adap-
tive VMD method based on ASSA, utilizing weighted kurtosis as the measure-
ment index. Subsequently, 11 features are extracted from the prominent modes 

FIGURE 4.5  (a) Raw signal with non-defective impeller. (b) FFT for non-defective 
impeller. (c) Different modes obtained by applying adaptive VMD to the raw signal.
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decomposed by adaptive VMD. The list of features, along with their definitions, 
is presented in Table 4.2. The extracted features are normalized within the range 
of [0, 1] using the following mathematical formula:
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Feature Feature 	
(4.26)

FIGURE 4.6  (a) The raw signal under clogged impeller condition. (b) FFT under clogged 
impeller condition. (c) Three different modes obtained by applying adaptive VMD under 
the clogged impeller condition.
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FIGURE 4.7  (a) The raw signal under blade-cut impeller condition. (b) FFT under blade-
cut impeller condition. (c) Three modes obtained by applying adaptive VMD under blade-
cut impeller condition.
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FIGURE 4.8  (a) The raw signal under wheel-cut impeller condition. (b) FFT under 
wheel-cut impeller condition. (c) Different modes obtained by applying adaptive VMD 
under wheel-cut impeller condition.
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4.2.5 �R esult and Discussion

4.2.5.1 � Comparison of the ASSA with Other Art of Optimization
The effectiveness of the proposed optimization algorithm (ASSA) is assessed 
using 23 benchmark functions. ASSA is compared with other advanced optimi-
zation algorithms, including SSA, GWO, GOA, SCA, and HGPSO, with met-
rics such as mean, standard deviation, best, worst, and median values being 
utilized for comparison. The results are summarized in Table 4.3. ASSA proved 

TABLE 4.2
Extracted Features with Their Definition

S. No. Features Definitions

1. Standard Deviation ( )stdx ( )( )
=

= −∑ 2

1

N

std m

i

x x i x N

2. Peak ( )px ( )= maxpx x i

3. Skewness ( )skex ( )( )
=

= −∑ 3

1

N

ske m

i

x x i x N

4. Kurtosis ( )kurx
( )( )

=

= −∑ 4
4

1

N

kur m std

i

x x i x Nx

5. Root Mean Square ( )rmsx ( )
=

= ∑ 2

1

N

rms

i

x x i N

6. Peak Factor (PF) = p

rms

x
PF x

7. Square Root Amplitude ( )srax ( )
=

 
 =
 
 
∑

2

1

N

sra

i

x x i N

8. Shape Factor (SF) ( )
=

 
 =
 
 
∑

1

N

rms

i

SF x x i N

9. Impulse Factor (IF) ( )
=

 
 =
 
 
∑

1

N

p

i

IF x x i N

10. Wavelet Packet Decomposition (WPD) Energy ( ) ( )
−

= = =

=∑ ∑∑
2 1

2 2

1 0 1

jN N

i i k

n k n

WPD x n x n

11. Permutation entropy ( )
=

−
− ∑

!
, ,

2

1

1
log

1

n

j j

j

P P
n

Here, x represents data; N represents the number of data points; mx  is the average value of ;x  ( )kx n  
represents the decomposition coefficient for kth sequence; and j  is the level of WPD decomposition.
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TABLE 4.3
Comparison of the Proposed Algorithm with Other Optimization Algorithms at Benchmark Functions

Function ASSA (Proposed) SSA GWO GOA SCA HGAPSO

F1 Mean 1.1063e−93 9.1209e−09 1.6672e−27 1.5788e−09 2.7425e−25 2.9579e−31

Standard Deviation 3.2380e−94 1.6818e−09 3.2816e−27 1.2994e−09 1.2119e−24 7.3334e−31

Best 5.5194e−94 6.2194e−09 5.4044e−30 1.8378e−10 5.1600e−35 6.4055e−34

Worst 1.7057e−93 1.3329e−08 1.4561e−26 5.5621e−10 5.4229e−24 3.3693e−30

Median 1.0649e−93 9.1999e−09 3.7141e−28 1.1901e−09 1.8613e−29 9.1882e−32

F2 Mean 5.3305e−48 7.7236e−06 7.4550e−17 0.9993 1.1173e−17 7.5501e−248

Standard Deviation 1.1164e−48 2.8604e−06 5.5643e−17 1.5429 3.4603e−17 0.0000

Best 3.9818e−48 4.7307e−06 1.5632e−17 3.5204e−04 5.1631e−22 5.8965e−301

Worst 6.8723e−48 1.7809e−05 2.6718e−16 6.4414 1.4762e−16 1.5100e−246

Median 5.2462e−48 7.1882e−06 6.2314e−17 0.4598 1.2468e−19 4.3475e−295

F3 Mean 1.1245e−93 1.2365e−09 2.4787e−05 1.2172e−07 2.8603e−09 6.1307e−30

Standard Deviation 1.1005e−93 3.8545e−10 7.4077e−05 2.8852e−07 1.1367e−08 1.7521e−29

Best 1.8863e−94 6.0467e−10 7.3815e−08 1.5850e−10 6.6900e−19 8.6162e−32

Worst 4.3993e−93 1.9480e−09 3.0164e−04 1.2462e−06 5.1007e−08 7.9903e−29

Median 7.2784e−94 1.1170e−09 4.9493e−07 1.0015e−08 8.7528e−13 1.1867e−30

F4 Mean 1.1824e−47 1.3264e−05 7.1506e−07 2.6024e−05 3.1534e−08 2.0042

Standard Deviation 2.5702e−48 2.4542e−06 8.1461e−07 1.3879e−05 6.8891e−08 0.9001

Best 5.6332e−48 8.1067e−06 6.9376e−08 9.0241e−06 1.3787e−07 0.4645

Worst 1.6194e−47 1.8578e−09 3.3931e−06 5.4687e−05 3.0085e−07 3.5475

Median 1.2105e−47 1.2999e−05 3.6015e−07 2.2629e−05 6.1902e−09 2.0167

(Continued)
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Function ASSA (Proposed) SSA GWO GOA SCA HGAPSO

F5 Mean 6.9279 12.3668 26.8866 78.1307 7.1655 27.5146

Standard Deviation 0.3478 24.2568 0.7314 258.6771 0.3510 26.1893

Best 5.8069 0.0546 25.7383 0.0062 6.5208 0.6620

Worst 7.3701 111.8152 27.9746 1.1219e+03 8.0564 89.6398

Median 6.8667 5.6310 27.1346 0.6503 7.2043 20.8308

F6 Mean 6.5498e−10 6.0812e−10 0.7139 9.9607e−10 0.3435 3.6023e−31

Standard Deviation 1.6644e−10 2.2654e−10 0.3548 6.0217e−10 0.1477 9.8853e−31

Best 3.8422e−10 2.0192e−10 6.4081e−05 8.9491e−11 0.0597 0.0000

Worst 1.0293e−09 1.0441e−09 1.2556 1.7876e−09 0.6379 4.4959e−30

Median 6.3909e−10 5.5265e−10 0.6857 1.0657e−09 0.3523 8.6282e−32

F7 Mean 1.3569e−05 0.0046 0.0017 0.0466 0.0018 2.3283e−05

Standard Deviation 1.1634e−05 0.0023 0.0015 0.0921 0.0014 2.1560e−05

Best 7.1617e−07 0.0010 5.9667−04 2.3148e−04 1.6883e−04 1.2256e−06

Worst 3.9854e−05 0.0087 0.0068 0.4063 0.0049 8.4515e−05

Median 1.0738e−05 0.0043 0.0011 0.0088 0.0015 1.8608e−05

F8 Mean −3.2454e+3 −2.8590e+3 −5.8693e+3 −1.6813e+3 −2.2116e+3 −3.692e+03

Standard Deviation 420.1125 347.6819 1.0887e+3 175.9365 139.7250 186.6751

Best −3.9514e+3 −3.7161e+3 −7.9772e+3 −1.9765e+3 −2.4821e+3 −3.952e+02

Worst −2.6257e+3 −2.4041e+3 −2.7557e+3 −1.3797e+03 −1.9810e+3 −3.360e+03

Median −3.3198e+3 −2.9729e+3 −5.9411e+3 −1.7379e+03 −2.1900e+3 −3.656e+03

F9 Mean 0 11.1933 2.0587 5.7581 1.6298 8.3079

Standard Deviation 0 5.3324 3.3974 4.5536 5.0518 2.8560

Best 0 2.9849 1.1369e−13 0.9950 0 2.9849

Worst 0 20.8941 11.1635 20.0345 18.3262 12.9345

Median 0 10.9445 5.1159e−13 4.2202 0 2.8560

TABLE 4.3  (Continued)
Comparison of the Proposed Algorithm with Other Optimization Algorithms at Benchmark Functions
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Function ASSA (Proposed) SSA GWO GOA SCA HGAPSO

F10 Mean 8.8818e−16 0.6157 1.0747e−13 0.3964 3.6419e−05 0.1906

Standard Deviation 0 0.8981 1.3880e−14 0.8276 1.6287e−04 0.4700

Best 8.8818e−16 5.2111e−06 7.9048e−14 1.8110e−05 8.8818e−16 4.4409e−15

Worst 8.8818e−16 2.3168 1.2879e−13 2.3168 7.2839e−04 1.5017

Median 8.8818e−16 1.0758e−05 1.0925e−13 1.4032e−04 4.4409e−15 7.9936e−15

F11 Mean 0 0.2750 0.0032 0.1143 0.0390 0.0191

Standard Deviation 0 0.1323 0.0067 0.0520 0.0973 0.0257

Best 0 0.1083 0 0.0246 0 0.0000

Worst 0 0.5534 0.0215 0.2267 0.3520 0.0853

Median 0 0.2325 0 0.1047 6.2339e−14 0.0099

F12 Mean 6.3064e−12 0.0563 0.0457 4.9053e−07 0.0777 9.3944e−11

Standard Deviation 2.1561e−12 0.1419 0.0211 1.4601e−06 0.0424 2.1414e−10

Best 2.6122e−12 2.0721e−12 0.0197 9.3515e−10 0.0167 1.5705e−11

Worst 9.9885e−12 0.5026 0.0997 6.6404e−06 0.2022 8.1376e−10

Median 6.7364e−12 9.3848e−12 0.0395 9.6065e−08 0.0698 1.5964e−11

F13 Mean 0.0011 5.4937e−04 0.6470 5.4986e−04 0.3145 0.0016

Standard Deviation 0.004 0.0025 0.2260 0.0025 0.0786 0.0040

Best 1.8693e−11 1.6934e−11 0.3099 2.3636e−10 0.1684 1.3498e−32

Worst 0.0110 0.0110 1.0122 0.0110 0.4375 0.0110

Median 2.8484e−11 3.5422e−11 0.5954 1.0370e−07 0.3208 1.6579e−32

F14 Mean 0.9980 0.9980 4.665 0.9980 1.0973 0.9980

Standard Deviation 1.8367e−16 1.2478e−16 4.4838 2.9263e−16 0.4436 2.0587e−14

Best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980

Worst 0.9980 0.9980 12.6705 0.9980 2.9821 0.9980

Median 0.9980 0.9980 2.4871 0.9980 0.9980 0.9980

(Continued)



106�
D

ata-D
riven

 Fau
lt D

iagn
o

sis

Function ASSA (Proposed) SSA GWO GOA SCA HGAPSO

F15 Mean 4.0088e−4 8.2922e−04 0.0044 0.0067 0.0011 0.0003075

Standard Deviation 1.6608e−4 3.4809e−04 0.0082 0.0092 3.4412e−04 0.0002

Best 3.0749e−4 3.1456e−04 3.0785e−04 4.2627e−04 5.8031e−04 0.0003075

Worst 7.7990e−4 0.0016 0.0204 0.0204 0.0015 0.0003075

Median 3.0932e−4 7.5297e−04 3.9681e−04 7.8225e−04 0.0013 0.0003075

F16 Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Standard Deviation 6.4525e−15 9.7833e−15 2.5449e−08 3.9422e−14 2.2270e−05 7.2568e−06

Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0315 −1.0316

Median −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

F17 Mean 0.3979 0.3979 0.3979 0.3979 0.3993 0.3979

Standard Deviation 5.5549e−15 4.7514e−12 7.2876e−05 3.7072e−12 0.0018 5.6245e−11

Best 0.3937 0.3979 0.3979 0.3979 0.3979 0.3979

Worst 0.3937 0.3979 0.3982 0.3937 0.4062 0.3979

Median 0.3937 0.3979 0.3979 0.3937 0.3989 0.3979

F18 Mean 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Standard Deviation 6.3699e−14 9.7833e−14 2.5871e−05 3.4093e−13 1.7842e−05 9.3963e−12

Best 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Worst 3.0000 3.0000 3.0001 3.0000 3.0001 3.0000

Median 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

TABLE 4.3  (Continued)
Comparison of the Proposed Algorithm with Other Optimization Algorithms at Benchmark Functions
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Function ASSA (Proposed) SSA GWO GOA SCA HGAPSO

F19 Mean −3.8624 −3.8628 −3.8617 −3.8241 −3.8546 −3.8627

Standard Deviation 1.8934e−14 4.3318e−14 0.0021 0.1729 0.0021 6.5542e−02

Best −3.8628 −3.8628 −3.8628 −3.8628 −3.8604 −3.8628

Worst −3.8628 −3.8628 −3.8553 −3.0897 −3.8521 −3.0698

Median −3.8628 −3.8628 −3.8627 −3.8628 −3.8542 −3.8628

F20 Mean −3.1955 −3.2324 −3.2772 −3.2681 −2.9750 −2.9964

Standard Deviation 0.0443 0.0531 0.7073 0.0611 0.2468 0.0273

Best −3.3195 −3.3220 −3.3220 −3.3220 −3.1299 −3.0425

Worst −3.3195 −3.2007 −3.1381 −3.1999 −2.0468 −2.9810

Median −3.3195 −3.2030 −3.3220 −3.3220 −3.0133 −2.9810

F21 Mean −10.1505 −8.5248 −9.3935 −7.2680 −2.7616 −10.1406

Standard Deviation 0.0012 2.9578 1.8508 3.3745 1.9669 1.8780

Best −10.1524 −10.1532 −10.1529 −10.1532 −6.2621 −10.1532

Worst −10.1482 −2.6305 −5.0982 −2.6305 −0.4982 −2.6305

Median −10.1507 −10.1532 −10.1513 −10.1532 −2.6870 −10.1531

F22 Mean −10.1340 −10.1392 −10.0193 −8.9924 −3.4448 −10.1392

Standard Deviation 1.1682 1.1793 1.7073 2.9466 2.3686 2.2568

Best −10.4023 −10.4029 −10.4027 −10.4029 −6.8715 −6.4521

Worst −5.0860 −5.1288 −2.7658 −1.8376 −0.5211 −2.7658

Median −10.4001 −10.4029 −10.4013 −10.4029 −4.3716 −4.3715

F23 Mean −9.9932 −9.1089 −9.7229 −8.5497 −4.1825 −9.1089

Standard Deviation 1.6646 2.9668 2.4970 3.5320 2.4040 2.9678

Best −10.5359 −10.5364 −10.5362 −10.5364 −9.6145 −10.5364

Worst −5.1244 −2.8066 −2.4217 −2.4217 −0.9415 −2.6586

Median −10.5340 −10.5364 −10.5338 −10.5364 −4.6284 −10.5364
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to be superior in 19 benchmark functions, including Sphere, Schwefel 2.22, 
Schwefel 1.2, Schwefel 2.21, Rosenbrock, Quartic, Rastrigin, Griewank, 
Penalized, Penalized 2, Foxholes, Kowalik, Six-hump camel back, Branin, 
Goldstein-price, Hartman 3, Shekel 5, Shekel 7, and Shekel 10, based on achiev-
ing the minimum standard deviation value. The SCA and GWO methods yielded 
better results for the Schwefel and Ackley functions, while HGPSO delivered 
the best performance on the Step and Hartman 6 benchmark functions. The 
findings highlight the overall effectiveness of ASSA in comparison to other 
optimization techniques.

The comparison of algorithms has been conducted on classical functions based 
on metrics such as mean, standard deviation, best, worst, and median over 20 inde-
pendent runs. However, this approach does not assess individual runs, which raises 
the possibility that any observed superiority may be coincidental. Therefore, it is 
crucial to compare the results of each run to evaluate the significance of the out-
comes. To determine the significance level for each run, the Wilcoxon rank sum 
statistical test was applied at 5% significance level, and the corresponding P-values 
for each benchmark are presented in Table 4.4. Strong evidence against the null 
hypothesis is provided by a P-value of less than 0.05, which implies that the supe-
rior final objective function values that the top algorithm achieved were not the 
result of chance. The best method for each test function is selected for statistical 
analysis, and it is contrasted with other algorithms one at a time. The smallest stan-
dard deviation is used to identify the optimal algorithm; if two algorithms have the 
same standard deviation, the method with the lowest mean value is deemed to be 
the best. The best algorithm in each function is marked with “N/A,” which stands 
for “Not Applicable,” because the best algorithm cannot be compared to itself.

As shown in the table, ASSA obtained the best results for 18 functions: specifi-
cally, F1, F3–F14, F16–F18, and F21–F23. In contrast, SCA and SSA achieved 
better results for functions F8 and F19, respectively, while HGPSO was identified 
as the top algorithm for F2, F15, and F20. According to the findings presented in 
Tables 4.3 and 4.4, ASSA consistently surpasses the other algorithms evaluated, 
highlighting the statistical significance of its superiority. In accordance with the 
No-Free Lunch (NFL) theorem [120], ASSA demonstrates a capacity to tackle 
problems that other algorithms struggle to solve efficiently.

4.2.5.2 � The Need for Optimization of VMD Parameters
The selection of optimal parameters, such as the mode number and quadratic pen-
alty factor (which controls frequency bandwidth), is crucial for determining VMD 
parameters, and these can be derived using the Ameliorated Salp Swarm Algorithm 
(ASSA) proposed in this study. By integrating opposition-based learning with a 
position updating concept into the basic SSA, the process is accelerated. The 
ASSA algorithm and the basic SSA have been compared. Figure 4.9 shows the 
convergence curves for both techniques. ASSA attains convergence more quickly 
than SSA, as seen in Figure 4.9.

In comparison to other methods, the accuracy of the suggested ASSA algo-
rithm in optimizing VMD parameters has also been evaluated. Figure 4.10 
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TABLE 4.4
P-values Calculated for the Wilcoxon Rank Sum-test (Significance Level 0.05) Corresponding to the Results in Table 4.3

Function ASSA SSA GWO GOA SCA HGPSO

F1 N/A 6.7860 x 10-08 6.7956 x 10-09 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08

F2 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08 N/A

F3 N/A 6.7860 x 10-08 6.7656 x 10-09 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08

F4 N/A 6.7478 x 10-08 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08

F5 N/A 0.0411 6.7956 x 10-08 0.0962 0.0337 1.7936 x 10-04

F6 N/A 0.0720 6.7956 x 10-08 0.0810 6.9756 x 10-08 6.776 x 10-08

F7 N/A 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08 6.9756 x 10-08 0.1075

F8 6.7765 x 10-08 1.2346 x 10-07 6.7956 x 10-08 6.5970 x 10-08 N/A 6.5997 x 10-08

F9 N/A 7.9043 x 10-09 7.4517 x 10-09 8.0065 x 10-09 0.0096 7.8321 x 10-09

F10 N/A 7.9334 x 10-09 7.6187 x 10-09 8.0065 x 10-09 1.6310 x 10-07 3.3187 x 10-09

F11 N/A 8.0065 x 10-09 0.0402 8.0065 x 10-09 6.6826 x 10-05 9.4038 x 10-06

F12 N/A 0.7972 6.7956 x 10-08 6.7956 x 10-08 6.7956 x 10-08 4.9511 x 10-08

F13 N/A 0.0026 6.7956 x 10-08 1.2493 x 10-05 6.7860 x 10-08 7.7336 x 10-05

F14 N/A N/A 6.4846 x 10-05 N/A 3.5055 x 10-07 N/A

F15 5.4753 x 10-05 8.0065 x 10-09 0.0055 1.5253 x 10-06 1.0352 x 10-06 N/A

F16 N/A N/A 1.1129 x 10-07 N/A 7.9919 x 10-09 7.9919 x 10-09

F17 N/A N/A 8.0065 x 10-09 N/A 8.0065 x 10-09 N/A

F18 N/A N/A 7.9919 x 10-09 N/A 7.991 x 10-09 N/A

F19 8.0065 x 10-09 N/A 8.0065 x 10-09 8.0065 x 10-09 8.0065 x 10-09 8.0065 x 10-09

F20 2.8636 x 10-08 2.7747 x 10-08 3.0480 x 10-04 2.8836 x 10-08 6.7956 x 10-08 N/A

F21 N/A 0.0057 0.2616 0.3637 6.7956 x 10-08 0.3637

F22 N/A 2.7769 x 10-07 0.0859 4.4162 x 10-05 1.2346 x 10-07 4.4162 x 10-05

F23 N/A 8.3337 x 10-04 0.9246 6.0054 x 10-04 1.2330e-07 8.3337e-04
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FIGURE 4.9  Convergence behavior for SSA and ASSA.

FIGURE 4.10  Comparison of various optimization methods regarding accuracy.
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displays the results as bar charts. The figure makes it evident that ASSA performs 
better than the other optimization methods.

4.2.5.3 � Results of the ELM Model and Its Comparison with Other 
Classification Models

The relevance of the extracted features is assessed using PCC. The descending 
values of the features’ coefficients (weights), which are generated from this 
coefficient, are used to rank the features. Table 4.2 displays the feature weights, 
which were determined using PCC, and Table 4.5 provides a summary. 
Additionally, as shown in Figure 4.11, these weights are represented in bar 
graphs for comparison study. The feature “root mean square” (designated as Sl. 
No. 5) is the most significant of the 11 characteristics, as seen in Table 4.5 and 
Figure 4.11, since it has the largest weight, with the standard deviation coming 
in second.

The primary features found are used to generate a dataset. The ELM model 
then uses this dataset to categorize the various fault conditions. As suggested in 
[114], the ELM parameters are set up as follows: the kernel type is selected as 
radial basis function (RBF)-kernel, the kernel parameter is set to 0.01 and the 
regularization coefficient is set to 1. With a training time of 0.0012 seconds, the 
suggested method attains 100% training and 97.5% testing accuracy rates, respec-
tively. Table 4.6 displays the results of comparing the ELM classifier’s perfor-
mance against alternative classification techniques. The outcomes show how well 
the suggested ELM-based method performs in identifying defect states from 
vibration data, clearly outperforming alternative classification methods.

TABLE 4.5
Weight of each Feature Obtained after Applying PCC

S. No. Features Weight of Features

1. Standard Deviation ( )stdx 0.2743

2. Peak ( )px 0.0552

3. Skewness ( )skex 0.0789

4. Kurtosis ( )kurx 0.1435

5. Root Mean Square ( )rmsx 0.5223

6. Peak Factor (PF) 0.0552

7. Square Root Amplitude ( )srax 0.0711

8. Shape Factor (SF) 0.1619

9. Impulse Factor (IF) 0.0259

10. Wavelet Packet Decomposition (WPD) Energy 0.0915

11. Permutation entropy 0.0850
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4.2.6 �C onclusion of Case 1 Study

An opposition-based ASSA has been developed to enhance the adaptability of 
VMD for identifying impeller defects in centrifugal pumps. This algorithm adap-
tively selects the optimal combination of VMD parameters: mode number (K) and 
quadratic penalty factor α  to align with the input signal. The key conclusions of 
the study are summarized as follows:

TABLE 4.6
Comparison of Performance of Different Classification Techniques with 
the Proposed Method Along with Training Time

S. No. Classification Method
Training Accuracy

Training Time (sec) 
for One Iteration

With 
Ranking

Without 
Ranking

With 
Ranking

Without 
Ranking

1 KNN 85% 83% 19.06 23.58

2 SVM 87% 86.25% 25.01 27.45

3 Random Forest 85% 87% 18.56 26.5

4 Proposed method (ELM) 100% 97.5% 0.0012 0.0014

FIGURE 4.11  Weight of features obtained by PCC.



Fault Diagnosis of the Centrifugal Pump� 113

	 1.	 While the VMD parameters τ  and ε  have minimal effect on decomposition, 
K and α significantly influence results. Prespecifying K and α without prior 
signal knowledge is not recommended. Appropriate selection of the qua-
dratic penalty factor α is crucial for noise reduction and bandwidth 
regulation.

	 2.	 VMD parameter optimization uses weighted kurtosis as its fitness function. 
This metric identifies sensitive modes and prevents information loss.

	 3.	 ASSA’s performance was compared to other optimization algorithms across 
23 benchmark functions (F1–F23), using mean, standard deviation, best, 
worst, and median values. ASSA achieved superior results (based on mini-
mum standard deviation) on 19 functions (F1–F5, F6–F7, F9, F11–F19, and 
F21–F23). Wilcoxon testing further confirmed ASSA’s statistically significant 
superiority on 18 functions (F1, F3–F7, F9–F14, F16–F18, and F21–F23).

	 4.	 Feature relevance was assessed using the PCC. Features were ranked by 
decreasing PCC value (weight). Root mean square was identified as the 
most prominent feature (highest weight) among the 11 features; standard 
deviation ranked second.

	 5.	 The developed ELM model achieved 100% training accuracy and 97.5% 
testing accuracy. Comparisons with other training methods showed supe-
rior performance in terms of both accuracy and computation time. While 
inherent, unstudied defects were included in the normal condition dataset, 
the results for the studied defect conditions were promising, highlighting a 
key advantage of this technique. The experiments demonstrate the method’s 
capability for automatic centrifugal pump fault identification.

4.3 � DIAGNOSIS OF BEARING DEFECTS IN CENTRIFUGAL 
PUMP (CASE 2)

Centrifugal pumps, capable of handling high fluid volumes, are susceptible to 
bearing defects caused by factors such as uneven forces, misalignment, insuffi-
cient lubrication, and manufacturing flaws. This work proposes a general normal-
ized sparse filtering (GNSF)-based Wasserstein distance with maximum mean 
discrepancy (MMD) method for extracting bearing fault features from vibration 
signals. GNSF normalizes the feature matrix, while the Wasserstein distance with 
MMD performs fault clustering and highlights feature contributions.

4.3.1 � Theoretical Background

This section describes generalized sparse filtering, Wasserstein distance, MMD, 
and long short-term memory (LSTM).

4.3.1.1 � Sparse Filter
Sparse filtering, a two-layer neural network for unsupervised feature learning 
[121], must satisfy three criteria: population sparsity, lifetime sparsity, and high 
dispersion (see Figure 4.12 for its basic configuration). The sparse filter 
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selectively activates a few features, differentiating features from different samples 
for improved sample discrimination and thus, ensuring distinct feature extraction 
from different samples.

In a sparse filter, the input consists of collected training samples { }
=1

Mi

i
x  of a 

signal, where ∈ 1i Lx R x  is a sample with N data points and M is the total number 

of samples. The output represents learned features { }
=1

.
Mi

i
f  The sparse filter learns 

the feature matrix ∈ 1i Lf R x  (with L learned features) using a weight matrix 
∈ .L NW R x  The mapping relationship is:

	 ( )=i i
l lf g W x

	
(4.27)

where 
i

lf  is the lth feature corresponding to the ith sample, lW  is the lth row vector 
of ,W  and ( ) =. .  is the absolute value function. Minimizing the cost function in a 
sparse filter induces generalized normalization, increasing competition among 
learned features and ensuring sparsity. As noted, 

i
lf  is a feature matrix whose rows 

are normalized using pl -norms, resulting in:

	

=

l
l

l p

f
f

f
	

(4.28)

where lf  is the lth row vector of 
i

lf  and .
p represents the lp-norm. Subsequent 

normalization of each column of 
i

lf  using ql -norms yields

	

=




ˆ
i

i

i

q

f
f

f
	

(4.29)

where 
if  is ith column vector of 

i
lf  and ql -norms are denoted by . .

p

Finally, the sparse filter minimizes cost function ( )C  as represented in Eq. 4.30 
to optimize the weight matrix W  using an rl -norm penalty.

	
( )

=

= − ∑
1

ˆsgn .
M

i

r
i

C q r f
	

(4.30)

FIGURE 4.12  Schematic of generalized sparse filtering.
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where ( )sgn .  represents the sign function. Eq. 4.30 shows that if =q r , then ˆ i

r
f  

always equals 1, hindering cost function minimization. Standard sparse filtering 
[121] uses = 2,p  = 2,q  and = 1.r  The non-smooth cost function is smoothed by 
incorporating the soft-absolute function (activation function), as shown in 
Eq. 4.31.

	 ( ) ε= +
2

f Wx 	 (4.31)

where −= 810 .ε  The limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS) algorithm [122, 123] minimizes the cost function .C  The gradient of 
the cost function with respect to W  is:

	 ( ) ε

 
∂ ∂ =  ∂ ∂ + 

2
. . TC C Wx

x
W f Wx
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4.3.1.2 � Wasserstein Distance
The distance between features that were extracted via generalized sparse filter-
ing is measured by the Wasserstein distance. The distance between feature vec-
tors x and y  in feature space M is denoted by ( ), .x yρ  Because the Wasserstein 
distance converts one distribution into another during distance calculation, it is 
demonstrated to perform better than other probability measures such as Jensen-
Shannon (JS) divergence and Kullback–Leibler (KL) divergence [124]. The 
Wasserstein distance between probability distributions P and Q is determined 
using Eq. (4.36).
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( ) ( ) ( ) ( ) 

= ∫  ∈Γ 

1/
inf

, , ,
,

z
z

pW P Q x y d x y
P Q

ρ µ
µ 	

(4.36)

where ( )Γ ,P Q  is the joint distribution of all the marginal distributions of P  and Q 
in set ∗ .M M

4.3.1.3 � Maximum Mean Discrepancy (MMD)
MMD quantifies the similarity between two distributions. It operates on the prin-
ciple that if two distributions generate samples such that the mean values of a 
function f (defined on the distributions’ shared feature space) are equal for both 
distributions, then the distributions are considered identical. Given datasets 

{ }
= …

=
1, , s

s s
i

i n
X x  and { }

= …
=

1, , t

t t
j

j n
X x  for distributions, P  and ,Q  respectively, their 

MMD is expressed by Eq. 4.37.
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where ( )∅ .  is a nonlinear mapping function, which represents the mapping 
between two resembling distributions.

4.3.1.4 � Long Short-Term Memory (LSTM) Network
LSTM, a type of recurrent neural network (RNN), is widely used and highly effi-
cient [125]. As described by Hochreiter and Schmidhuber [125], LSTMs include 
input, output, and several control gates. The input gate data enables the network 
to predict the output. The LSTM processes sequential data step-by-step. Eqs. 
(4.38)–(4.43) detail the fundamental principles of LSTM operation.

	 ( )− −
∗ = + +t t 1 t 1

xc hc cc tanh W x W h b
	

(4.38)

	 ( )− − −= + + +t t 1 t 1 t 1
xi hi ci ii W x W h W c bσ

	
(4.39)

	 ( )− − −= + + +t t 1 t 1 t 1
xf hf cf ff W x W h W c bσ

	
(4.40)

	
−

∗= + 

t t t 1 t tc f c i c 	 (4.41)

	 ( )− − −= + + +t t 1 t 1 t 1
xo ho co oO W x W h W c bσ

	
(4.42)

	 ( )= 

t t th O tanh c
	

(4.43)



Fault Diagnosis of the Centrifugal Pump� 117

where ix  and th  are the inputs of the memory cell. tf , ti , and tO  are the output 
of  the control gate, input gate, and output gate, respectively. Wxc,Whc,Wxi,Whi,  
Wci,Wxf,Whf,Wcf,Wxo,Who, and Wco indicate the weight matrix. cb , ib , fb , and ob  are 
the bias vectors. −t 1c  is LSTM unit step value that can be obtained by recur-
sive  function −t 2h  as shown in Eq. (4.43). Thus, LSTM’s output can be 
defined as ( ) = +t t

y y yf h h W b .

4.3.2 � Proposed Fault Diagnosis Approach Using GNSF Based on 
Wasserstein Distance with MMD

The proposed fault diagnosis scheme uses GNSF and LSTM as its two main 
learning stages. First, GNSF training optimizes the weight matrix W to extract 
features from the raw vibration signal. Then, the LSTM classifies the machinery’s 

health conditions based on these learned features. A training dataset { }
=1

,
Mi i

i
x y  is 

created using M samples.
Here, ∈ 1i Nx R x  represents the ith sample with N data points, and iy  is its cor-

responding health condition label. The proposed fault diagnosis scheme proceeds 
as follows:

Step 1: Training
First, the GNSF model is trained with input and output dimensions inN  and 

outN , respectively, using sN  overlapping segments (see Figure 4.13). The 

training set, comprising Ns segments { }
=1

,
sMNj

j
s  where ∈ 1inj Ns R x  represents 

the jth segment with inN  data points, is then 2l  normalized, resulting in:

	

=

2

j
j

j

s
s

s
	

(4.44)

This normalization minimizes the negative impact of outliers, facilitating 
optimal solution finding. The normalized training set ( )nS  then undergoes 
whitening to improve the sparse filter’s generalization ability, using Eq. 4.45.

	 ( ) =cov T
nS EDE 	 (4.45)

where cov is the covariance matrix, E  is the orthogonal matrix, and D is the 
diagonal matrix. The whitened training set ( )wS  is represented by Eq. 4.46.

	
−

=
1

2 T
w nS ED E S 	 (4.46)

Finally, wS  trains the SF model, yielding an optimized weight matrix W  that 
extracts discriminatory features from the training data.
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FIGURE 4.13  Architecture of the developed fault diagnosis method.
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Step 2: Feature extraction
Post-training, each sample is divided into K  segments ( )= ,

in

NK N  creat-

ing a segment set { }
=1

,
Ki

k
k

x  where ∈ 1ini N
kx R x  is the kth segment of the ith 

sample. The SF maps each 
i
kx  to a local feature vector ∈ 1,outi Nf R x  produc-

ing a feature set { }
=1

.
Ki

k
k

f  The learned feature vector ∈ 1outi Nf R x  is then rep-
resented by Eq. (4.47).

	 =

= ∑ ,

1

1
K

i i
l k l

k

f f
K 	

(4.47)

where i
lf  denotes the lth learned feature of ,if  and ,

i
k lf  is the lth local feature 

of .ikf  These learned feature vectors 
if  then form the feature matrix ∈ .outN Mf R x

Step 3: Clustering of the extracted features using the normalized GNSF parameters.
The clustering of GNSF-extracted features (using normalized parameters) 
highlights individual feature contributions. This clustering uses a Wasser
stein distance based on MMD; the Wasserstein distance measures inter-
feature distances, while MMD quantifies feature similarity.

Step 4: Using LSTM for fault diagnosis.
Finally, the LSTM classifies the different health states. Before LSTM train-
ing, the feature matrix columns are 2l  normalized. The trained LSTM model 
then diagnoses the health conditions of rotating machinery using test sam-
ples. Figure 4.13 presents a flowchart of the proposed algorithm. Figure 
4.14 illustrates the designed unsupervised deep learning network incorpo-
rating the clustering method.

FIGURE 4.14  Schematic of the designed deep learning network (clustering).
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4.3.3 �E xperimentation

4.3.3.1 � Test Rig
The performance of the proposed method is validated using vibration data from a 
centrifugal pump test rig (refer to Figure 4.15 for a photograph of the pump; bear-
ing details are provided in a previous section and in Figure 4.16; see Table 4.7). 

TABLE 4.7
Description of Different Health Conditions of the Centrifugal Pump

S. No. Health Condition No. of Samples Condition Label

1 1 seeded hole of 1 mm dia. at inner race (1 IR) 400 0

2 2 seeded holes of 1 mm dia. at inner race (2 IR) 400 1

3 1 seeded hole of 1 mm dia. at outer race (1 OR) 400 2

4 2 seeded holes of 1 mm dia. at outer race (2 OR) 400 3

FIGURE 4.16  A pictorial view of different health conditions of centrifugal pump.

FIGURE 4.15  Pictorial view of the centrifugal pump.
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The study examines four bearing health conditions, with 400 samples collected 
for each condition. 10% of the data is randomly chosen for training the SF and 
LSTM models, while the remaining data is utilized for validation purposes. Each 
sample is divided into 200 training segments, each containing 700 data points, to 
prevent data leakage. PCA is performed, and the first c principal components 
(PCs) are used to construct the GNSF training matrix. Following the guidelines in 
[122], sparse filtering parameters are configured ( )= = =100, 50 ,in out sN N N  with 
50 iterations of L-BFGS. To reduce variability, 20 experimental runs are per-
formed; the performance and computation time are averaged across these runs, 
with standard deviations illustrated by error bars.

The number of PCs affects diagnostic performance and computation time by 
influencing input sample dimensionality and error. PCA was applied to each train-
ing sample’s 200 segments to determine the optimal number of PCs ( ).c  Diagnostic 
performance was analyzed for = = =1, 1, 1p q r  at different c  values (Figure 4.17; 
= 0c  indicates no PCA). PCA improves accuracy, consistency, and computational 

efficiency. Increasing c improves accuracy and reduces standard deviation but 
increases computation time; computation time becomes excessive for > 35.c  
A balance between accuracy and computation time is needed; experiments sug-
gest an optimal c  range of [15–35]. Therefore, c  was selected from this range to 
optimize accuracy and computation time.

Prior sections explored the impact of normalization parameters. The method’s 
performance was evaluated at various p values (with = =2, 2).q r  Figure 4.18 
shows results for (a) when < ,p q  and (b) when > .p q  High accuracy and 

FIGURE 4.17  Results at different no. of PCs with =1p  & = 2.q
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consistent diagnostic results were observed for < <0.5 1p  and > 2.5;p  > 2.5p  
yielded superior accuracy and lower standard deviation compared to < .p q  Two 
key conclusions arise: (1) inappropriate p values negatively affect sparse filtering 
performance and (2) optimal accuracy with generalized sparse filtering is achieved 
when ≤ ≤2.5 3p  (with constant q and ).r

FIGURE 4.18  Diagnostic results different p values with = 2q  & = 2r  (a) <p q (b) > .p q
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This section analyzes the effect of varying q  values on performance for (a) 
= 2.8p  and (b) = 0.8.p  Sparse filtering failed to converge for both p values. 

Figure 4.19(a) shows that the method performs better when > .p q  Figure 4.19(b) 
shows classification results for = 0.8.p  Optimal q  values fall within the range 

< <1.5 2.5;q  results are generally better for > 1.8.q

FIGURE 4.19  Diagnostic results at different values of q  with = 2r  (a) = 0 : 8p  
and (b) = 3.p
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Figure 4.20 shows the method’s performance at various r values. Higher accu-
racy is achieved for ≤ ≤2 3.r  r has minimal impact on diagnostic results. While 
row normalization extracts differential features and sparse filtering focuses on 
features related to the second derivative, extremely small or large r  values nega-
tively affect feature distinctiveness. Therefore, = 2r  is selected as the opti-
mal value.

Results demonstrate the method’s ability to accurately classify centrifugal 
pump health conditions for both >p q and < .p q  Optimal ranges for p and q 
ensure high efficiency and robustness. The study shows that generalized sparse 
filtering performs better (lower standard deviation) when > .p q  The optimal row 
normalization parameter r is 2. p  and q are interdependent; once p is chosen, q 
must be selected from an optimal (not too small or too large) range. This aligns 
with the theoretical approach. Figure 4.21 shows results from investigating the 
optimal range for the /p q ratio (0.5 ≤ /p q ≤ 1.5). The method performs best at a 

/p q ratio of 1.5, offering a wider range of normalization parameters while main-
taining accuracy and stability.

Generalized sparse filtering extracts high-dimensional feature vectors. t-distrib-
uted stochastic neighbor embedding (t-SNE) [36] reduces these to two dimensions 
for visualization (Figure 4.22), illustrating why varying normalization parameters 
yield different accuracies. Figure 4.23 shows the confusion matrix ( )= =2.8, 2 ,p q  

FIGURE 4.20  Diagnostic results at different values of r  with = 3p  and = 2.q
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FIGURE 4.21  Diagnostic results with different values of p with = 2r  (a) =/ 0.5p q  
and (b) =/ 1.5.p q
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FIGURE 4.22  2D visuals of the features using t-SNE at 4 different conditions with <p q and = 2r .
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demonstrating 100% accuracy in classifying centrifugal pump health conditions. 
Figure 4.24 shows the LSTM classifier’s accuracy at = 2.8p  and = 2q .

4.3.3.2 � Comparison with Other Methods
Generalized sparse filtering’s effectiveness was compared to standard sparse fil-
tering using varying training sample sizes. Standard sparse filtering randomly 
extracts 200 overlapping segments ×∈ 200 200.S R  per sample, then applies whiten-
ing ×∈ 200 400000.sS R  Features are learned using = = =2.8, 2, 2,p q r  and 20 PCs 
(from the range [15, 35]). Table 4.8 and Figure 4.25 present the results, accuracy 
increases, and standard deviation decreases with more training data. Standard 
sparse filtering shows higher computation time and standard deviation than the 
proposed method, even with larger training datasets. The proposed method 
achieves better performance with fewer training samples (e.g., exceeding the 
accuracy of standard sparse filtering at 10% of training data, even at only 1% of 
training data). At 35 PCs and 5% training data, the proposed method achieved 
99.95% accuracy with 0.04% standard deviation, comparable to standard sparse 

FIGURE 4.23  Confusion matrix at = 2.8p  and = 2.q
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TABLE 4.8
Comparison of Different Sparse Filtering Methods for Centrifugal Pump

Methods

No. of 
Training 
Samples

No. 
Health 
States

Computational 
Time (s)

Standard 
Deviation 

(%)

Average 
Accuracy 

(%)

Standard sparse 
filtering

10 % 5 19.6 0.98 95.12

GNSF without PCA 
. )2 8 2(p = ,q = 10 % 5 48.5 0.19 97.65

The proposed method 
( .2 8 2p = ,q = , 20 
PCs)

1 % 5 10.1 0.16 98.68

The proposed method 
( .2 8 2p = ,q = , 20 
PCs)

3 % 5 12.9 0.10 99.26

The proposed method 
( .2 8 2p = ,q = , 35 
PCs)

5 % 5 19.5 0.04 99.95

FIGURE 4.25  Comparison of diagnostic results under different methods with different 
number of samples.
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filtering’s computational time. Comparisons with fault diagnosis methods using 
Mahalanobis, Cosine, Chebyshev, and Euclidean distances (Figure 4.26) demon-
strate the proposed method’s robustness and stability.

4.3.4 �C onclusion of Case 2

This work proposes a novel unsupervised fault diagnosis method: GNSF com-
bined with Wasserstein distance and MMD. The generalized − /r p ql  norm objective 
function is optimized to improve feature sparsity and sparse filtering regulariza-
tion. Wasserstein distance with MMD clusters features, highlighting their contri-
butions. PCA preprocesses the data to remove correlations. An LSTM classifier 
identifies centrifugal pump faults. Results from the centrifugal pump dataset con-
firm the method’s robustness. The study concludes that:

	 1.	 Optimization of sparse filtering parameters ensures the proposed method 
achieves more accurate and reliable results by adaptively extracting vibra-
tion signal features.

	 2.	 Feature clustering uses the Wasserstein distance with MMD, highlighting 
each feature’s contribution to fault classification. Comparisons with tradi-
tional methods demonstrate the superiority of this new clustering approach.

	 3.	 The proposed method effectively identifies centrifugal pump health condi-
tions even with limited training data.

	 4.	 The proposed method uses GNSF to extract discriminative features from 
the centrifugal pump. These features are then clustered using the Wasserstein 
distance with MMD, improving fault classification.

FIGURE 4.26  Comparison of different clustering methods in the fault diagnosis 
approach.
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	 5.	 The proposed method accurately identifies various centrifugal pump health 
conditions, even with limited training data; for example, achieving 99.95% 
accuracy with only 5% of the samples used for training.

	 6.	 GNSF offers a wider range of normalization parameters, resulting in a more 
accurate and robust method than traditional sparse filtering.

4.4 � COMPARISON OF METHODOLOGIES PROPOSED IN 
CASES 1 AND 2

Case 1’s proposed method, while superior and robust for diagnosing centrifugal 
pump impeller defects, requires manual feature extraction. Case 2’s method is 
fully automatic for bearing defect diagnosis. To compare them fairly, Case 1’s 
method was applied to bearing defects, and Case 2’s method to impeller defects. 
Table 4.9 shows the resulting accuracy and computation times.

Table 4.9 shows that Case 1’s method achieves slightly higher efficiency and 
lower computation time compared to Case 2’s method in fault diagnosis.

4.5 � SUMMARY

This chapter investigates two centrifugal pump defect scenarios: impeller defects 
and combined impeller/bearing defects. For impeller defects, an ameliorated salp 
swarm algorithm (ASSA) optimizes VMD parameters using weighted kurtosis as 
the fitness function. The optimized VMD decomposes the signal into modes, and 
weighted kurtosis selects the most sensitive mode for feature extraction. PCC 
ranks features, indicating their importance and removing redundancy. These 
selected features train an ELM model to determine training and testing accuracy. 
For bearing defects, a GNSF method using Wasserstein distance with MMD is 
proposed. GNSF normalizes the feature matrix, and the Wasserstein distance with 
MMD performs fault clustering, highlighting feature contributions.

TABLE 4.9
Comparison of Fault Schemes of Cases 1 and 2

Methods

Impeller Defects Bearing Defects

Average 
Accuracy 

(%)

Computational 
Time (s)

Average 
Accuracy 

(%)

Computational 
Time (s)

VMD-ASSA-ELM 100 12 100 13.8

GNSF ( = =. ,2 8 2p q , 35 PCs) 97.64 17.76 99.95 19.5
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Fault Diagnosis 
of Bearing

5.1 � INTRODUCTION

Rolling bearings are critical components found in numerous applications, such 
as wind turbines, helicopter gearboxes, aircraft engines, and high-speed trains, 
and they are susceptible to failures that can lead to costly downtime. Bearing 
defects generate cyclic impulses (repeating transients) in vibration signatures, 
which are valuable for condition monitoring. However, detecting these transients 
within complex signals presents difficulties due to noise and interference from 
other machinery components [126, 127]. Effective signal processing techniques 
are vital for early fault detection. Current methods designed to enhance fault char-
acteristics can be categorized into three groups: resonance demodulation, decom-
position, and time–frequency analysis [128–131].

A variety of signal processing techniques are available for detecting bearing 
faults, including wavelet decomposition [42], wavelet packet decomposition [43], 
linear mode decomposition (LMD) [132], empirical mode decomposition (EMD) 
[133], ensemble empirical mode decomposition (EEMD) [134], and complete 
ensemble empirical mode decomposition (CEEMD) [52]. These methods can 
effectively manage multi-frequency components. However, wavelet methods 
require pre-selection, which limits their adaptability. While both EMD and LMD 
are adaptive, they face challenges with mode mixing. EEMD and CEEMD help 
reduce mode mixing but can introduce difficult-to-remove noise [117]. Kumar 
and Kumar [134] provided a review of various vibration signal processing tech-
niques for fault detection in rotary systems. Han et al. [133] utilized EMD, parti-
cle swarm optimization (PSO), and support vector machines (SVMs) for 
diagnosing gear faults under different loads. Buzzoni et al. [135] implemented 
automatic EMD for localized fault detection in multistage gearboxes. Variational 
mode decomposition (VMD) [136] offers enhanced bandwidth selection and 
noise suppression [137], but it requires predefined parameters [138]. Swarm 
decomposition (SWD) [139] addresses issues related to mode mixing and 
noise [140].

Contemporary researchers are increasingly relying on artificial intelligence for 
its capability to identify relationships within training patterns. Structures such as 
the Feed forward neural network (FFNN) [105], radial basis function neural net-
work (RBFNN) [141], Elman neural network [142], and SVM [36] are various 
types of artificial neural networks (ANNs) employed to create classification mod-
els based on these relationships. Additionally, the extreme learning machine 
(ELM) is another approach utilized in classifying different machine components, 
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particularly in fault diagnosis and condition monitoring [114]. Abdoos [143] inte-
grated ELM with VMD for predicting wind power, while Liu et al. [144] con-
ducted numerical simulations to identify faults in gears and subsequently classified 
them using ELM.

Researchers have investigated various optimization techniques to determine 
the best ELM parameters, aiming to boost the model’s accuracy. Finding the ideal 
parameter combination not only improves accuracy but also decreases computa-
tional time. Kang et al. [145] employed a genetic algorithm to optimize ELM 
parameters for defect identification in transformers. A restricted optimization-
based method was presented by Shah et al. [146] to improve the ELM’s gait detec-
tion training and testing accuracy. Furthermore, Yang et al. [147] found the ideal 
ELM parameters for diagnosing aero-engine faults by using quantum-behaved 
particle swarm optimization (QPSO).

An optimized ELM model for the automatic identification of bearing faults is 
presented in this work. SWD breaks down the raw signal into several modes. The 
mode with the lowest permutation entropy (PE) among these is thought to be the 
most significant or sensitive in terms of defect signatures. This prominent mode is 
used to pick features using a filter-based relief technique. To minimize data redun-
dancy, characteristics are also ranked using score values obtained from statistical 
measurements. The ELM model is then trained using these chosen features as 
inputs. An opposition-based slime mold method is used to fine-tune the ELM 
parameters to attain optimal performance. An established process is used to vali-
date the created ELM model.

5.2 � PRELIMINARIES

5.2.1 � Swarm Decomposition (SWD)

Apostolidis introduced an innovative method for signal decomposition called 
SWD [139]. By effectively parameterizing the approach, Swarm Filtering (SWF) 
can successfully isolate the key oscillatory component from the signal. The input 
signal   x n  is viewed as the path taken by the prey in the swarm, and the process-
ing is analogous to the swarm’s hunting process, while the trajectory of the swarm 
corresponds to the output. A swarming model is developed to understand the the-
ory behind SWF. Certain key concepts must be defined to construct this model. 
The position of the prey at the nth step is denoted as   preyP n . M refers to the 
number of swarms involved.   iP n  and   iV n  represent the position and velocity 
of the ith swarm at the nth step, respectively. Two distinct interactions govern the 
swarm’s movement and hunting behaviors. The driving force −   1drF n  represents 
the first interaction and is defined for the ith individual at the nth step as follows:

	 − = − −          1 1dr prey iF n P n P n 	 (5.1)

The cohesion force produces the second interaction and is characterized as an 
induced force acting on all members of the swarm, defined as follows:
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Here, ( )sgn .  and ( )ln .  denote the sign function and the logarithmic function, 
respectively. The function ( ).f  can simultaneously apply the cohesion force in 
both attractive and repulsive manners. The variable d represents the distance 
between two swarm members, while .  indicates the absolute value. The criti-
cal distance is denoted as ,cd  which typically regulates the swarm’s distribution. 
Additionally, cd  also serves as the root mean square (RMS) of the input signal. To 
pursue the prey effectively, the swarm needs to update its position. Consequently, 
the velocity and position for the ith individual at the nth step are expressed as 
follows:

	 ( )δ − −= − + +          11i i dr co iV V n F n F n 	 (5.4)

	 δ= − +          1i i iP n P n V n 	 (5.5)

In this case, d  influences the adaptability of the swarm. The trajectory of the 
swarm, which represents the output of the SWF, is defined by the following 
Eq. (5.6).
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The parameter β  disrupts the order of M, with a smaller β  value, such as 0.005, 
being favored to achieve a reasonable M. Both parameters d and M are crucial in 
governing the behavior of the swarm. The following criterion is used to determine 
the optimal values of these parameters.

	
( ) ( ){ }δδ

−∑
2

,
,

M

k

argmin
Y k S k

M 	
(5.7)

In this context, ( )δ ,MY k  and ( )S k  denote the Fourier transforms of δ   ,MY n  and 
   ,s n  respectively. δ   ,MY n  signifies the output of the SWF with parameters δ  

and M, while s[n] represents the non-stationary multicomponent signal, which is 
combined with a mono-component. The primary goal of this process is to identify 
the values of δ  and .M  The SWF detects similarities in oscillatory components 
by comparing them with the non-stationary signal utilizing these parameters. 
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The association between swarm parameters and each individual frequency is ref-
erenced in [139].

	 ( ) − = − 
073533.46 29.1M w w

	
(5.8)

	 ( )δ = − + −21.5 3.454 0.001w w w 	 (5.9)

where w represents the normalized frequency. The value of M is established 
through a rounding operation.

The SWF is performed iteratively to identify the dominant oscillatory mode of 
the residue. The algorithm halts when the residual signal lacks any oscillatory 
mode. Additionally, SWF is concluded when the difference between two succes-
sive iterations falls below the threshold (T_th). The frequency band with the high-
est amplitude in spectral density is selected as a fitness function for optimization 
in each iteration. To enhance efficiency, the Savitzky-Golay (SG) filter is utilized, 
as it smooths the energy spectrum prior to identifying the highest peak [139, 140]. 
A predefined threshold for peak selection ( )thPS  is established to minimize the 
search space. The optimal frequency mw  is determined using the following 
equations.

	
( )′= >( )itm X th

argmax
w S w PS

w 	
(5.10)

	 ( )( )′ ′=it itX XS SGfilter S w
	

(5.11)

where S is the Fourier transform for the signal    .itx n

5.2.2 �P ermutation Entropy (PE)

For an arbitrary time-domain series ( ){ }= …, 1,2, , ,x k k N  according to the embed-
ding theorem, the delay embedding vector for D-dimensional data at time i is 
expressed in Eq. (5.12).

	 ( ) ( ) ( ) ( )( )τ τ τ = + + … + − , , 2 , , 1D
iX x i x i x i x i D

	
(5.12)

where D denotes the embedding dimension, which is greater than 2, τ  represents 
the time lag, and i takes the values …1,2, , .N  The notation !D  refers to the order of 
the symmetric group corresponding to the embedding dimension ,D  represented 
as .DS  This symmetric group encompasses all the permutations of length D [148].

Let ( )π ε= …1 2, , , ,j D Dj j j S  where π j denotes the symbol in ,DS  π j is permuta-
tion of D

iX  only when it becomes the unique symbol for DS  and satisfy the follow-
ing two conditions:
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	 ( )( ) ( )( ) ( )( )τ τ τ+ − ≤ + − ≤…≤ + −1 21 1 1Dx i j x i j x i j 	 (5.13)

	 ( )( ) ( )( )τ τ− −< + − = + −1 1if 1 1s s s sj j x i j x i j 	 (5.14)

Eq. (5.15) is used to obtain the relative frequency for each permutation π :j
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where # denotes any constant number. As per Shannon’s entropy of !,D  the PE is 
defined as follows:
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The above equation is normalized by ln !D  in the interval [0,1] and represented in 
the following manner:
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The PE algorithm transforms the candidate time series into a symbolic series 
while maintaining the relationship between the current value and its equidistant 
past values [149]. To calculate PE, it is sufficient to understand the relationship 
between two sample points from the time series. This characteristic not only 
makes PE resistant to noise but also enhances its robustness. Additionally, PE 
measures the extent to which the time series deviates from randomness. A lower 
PE value indicates a more regular time series, meaning that an increase in the PE 
value corresponds to greater randomness in the time series [150]. Any change in 
PE amplifies variations in the time series.

5.2.3 �E xtreme Learning Machine (ELM)

The ELM algorithm was introduced by Huang et al. [114]. It serves as a learning 
framework for single hidden layer feedforward neural networks (SLFN) and can 
be utilized for both classification and regression tasks. In ELM, the number of 
hidden layer nodes in the SLFN can be set adaptively during training. The input 
weights and biases of the hidden layer are chosen randomly, while the activation 
function depends on the specific problem [114, 151]. The weights linking the 
hidden layer to the output layer are computed analytically. Rather than randomly 
choosing the input weights and biases for the hidden layer, it is crucial to optimize 
both parameters to attain optimal fitness [145, 152].
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5.2.3.1 � ELM Model
For N  arbitrary samples ( ), ,i ix t  where ε= …  1 2, , ,

T n
i i i inx x x x R  and 

ε= …  1 2, , , ,
T m

i i i imt t t t R  a standard SLFNs with an activation function ( )f x  and 
N  neurons in the hidden layer can be mathematically modeled as

	
( ) ( )β β

= =

= + = = …∑ ∑
1 1

. ; 1,2 .,i i j i i j i j

i i

f x f a x b t j N
N N

	
(5.18)

where = …  1 2, , ,
T

i i i ina a a a  represents the weight vector that connects the thi  hid-
den node to the input nodes. ib  is the threshold associated with the thi  hidden 
neuron. The weight vectors β β β β= …  1 2, , ,

T
i i i im  are used to link the thi  hidden 

neuron to the output neurons. The activation functions that can be chosen include 
“Sigmoid,” “Sine,” and “RFB.”

Eq. (5.18) can be written as

	 β =H T 	 (5.19)

where
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In this equation, H is the hidden layer output matrix of the neural network. The thi  
column of H is the thi  hidden node output with regard to …1 2, , , .Nx x x

The conventional neural network learning algorithm requires the adjustment of 
multiple training parameters for the artificial network and often risks converging 
to a locally optimal solution. In contrast, the ELM algorithm removes the neces-
sity for tuning the input weights and hidden biases of the network. The only 
requirement is to establish the number of nodes in the hidden layer. This approach 
yields a unique optimal solution, offering advantages such as rapid learning speed 
and improved generalization performance. As a result, training the SLFN is 
addressed as a linear equation using the least squares method (Figure 5.1).
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( ) ( )ββ β… … − = … … −1 1 1 1, , , , , ˆ min , , , , ,H a a b b T H a a b b TN N N N 	 (5.22)

The least-square solution of linear Eq. (5.22) is given as

	 β ∗= H T 	 (5.23)

∗H  indicates Moore–Penrose inverse of the hidden layer output matrix .H

5.2.4 � Slime Mould Algorithm (SMA)

Li et al. [153] introduced a novel optimization algorithm known as the slime mould 
algorithm (SMA). In this context, “slime mould” refers to Physarum polyceph-
alum, which is classified as a fungus. This eukaryotic organism thrives in cold 
climates, with its primary nutritional stage being Plasmodium. During this stage, 
the organic matter in the slime mould searches for food and secretes enzymes to 
aid in digestion. Drawing inspiration from the behavior of slime mould, Li et al. 
[153] developed a mathematical model. The slime mould navigates toward food 
sources by detecting their scent in the air. The following formula simulates this 
behavior of approaching food:
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(5.24)

FIGURE 5.1  Extreme learning machine (ELM) architecture.
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where 


bX  represents an individual position with the strongest odor. 


X denotes the 
location of the slime. 



AX  and 


BX  are two randomly chosen individuals from the 
slime mould. 



W  indicates the weight of the slime. The parameter 


vb is defined 
within the range of −  , .a a  The values for ,p  



,vb  ,a  and 


W  are specified in 
Equation (5.25).

	 ( )= −tanhp S i DF 	 (5.25)

Here, ∈ …1 1,2, , ,n  ( )S i  is the fitness of 


.X  DF is the best fitness obtained in all 
iterations. As

	 = −  


,vb a a 	 (5.26)

where a is defined as per Eq. (5.27).
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The weight 


W  is given as follows:
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	 ( )=SmellIndex sort S 	 (5.29)

where the condition indicates that the first half of the population is ranked accord-
ing to ( ).S i  The variable r  is a random value within the interval [0,1]. max_ t  
refers to the maximum number of iterations. bF  and wF represent the optimal 
fitness and the worst fitness in the current iterations, respectively. SmellIndex  
arranges the fitness values in ascending order. The following equation simulates 
the contraction of food by the slime mould.
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where UB and LB are upper and lower bound for the given search range, rand and 
r represent random values in the range [0,1].
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5.2.5 �O pposition-Based Learning

The global optimum is randomly selected to initiate any optimization algo-
rithm, which in turn initializes individuals within a defined search space. Each 
individual updates their position based on their intelligence and behavior while 
searching for a solution. The computation time associated with these methods is 
influenced by the initial guesses. However, this time can be reduced by examining 
the opposite solution [154–156]. Subsequently, the solutions obtained from both 
the random choice and its opposite are evaluated to determine the best option. 
This optimal solution is used to initialize the individual, as verified by its fitness 
function. This approach not only lessens computational time but also enhances 
convergence speed. This technique is applied to each solution during the initial-
ization process, which is conducted according to the following equations:

	 ( ) ( )= + − = … = …min max min ; 1,2, , ; 1,2, ,ij j ij j jx x r x x i NP j D
	

(5.31)

	 = + −max min
ijo j j ijx x x x 	 (5.32)

where ijx  denotes the initial population with an upper bound of max
jx  and a lower 

bound of min.jx  The term ijox  represents the population derived from opposition-
based learning. The variable r_ij is a uniformly distributed random number within 
the range of [0,1].

5.2.6 �R elief-Based Algorithm

The relief-based algorithm introduced by Kira et al. [157, 158] is based on 
instance-based learning principles. Relief calculates an intermediary statistic for 
each feature, which is utilized to gauge the relevance of the feature to the target. 
These statistics are referred to as feature weights (w[N]) and fall within a range 
from –1 (worst) to +1 (best). The code for the relief-based algorithm is presented 
in Figure 5.2.

Where the diff  is defined for discrete and continuous features using equation 
(5.33) and (5.34), respectively.
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where =1 iI R  and 2I  is either ′ ′H  or ′ ′M  [159]
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5.3 � PROPOSED ALGORITHM FOR FAULT IDENTIFICATION

The detailed procedure adopted for the automatic fault identification in the bear-
ing is as follows:

	•	 The obtained vibration signal is the input into the SWD with pre-
determined parameter ranges, which then decomposes it into vari-
ous modes.

	•	 The mode exhibiting the lowest PE is chosen as the dominant mode.
	•	 The filter-based Relief algorithm is employed for selecting and ranking the 

features.
	•	 With the extracted features, a dataset is created consisting of both training 

and test data.
	•	 The training dataset is the input into the ELM, where its parameters (the 

weights connecting the input layer to the output layer and the biases in the 
hidden neurons) are optimized using the opposition-based SMA.

	•	 The weight search range is established from 0.001 to 1000, while the biases 
have a range of 10 to 1000.

	•	 Using the optimized ELM parameters, a classification model is developed 
for the purpose of fitness evaluation.

	•	 The established ELM model is evaluated using the test dataset to determine 
the training and testing accuracy.

The whole procedure in the form of a flow chart is given in Figure 5.3.

FIGURE 5.2  Pseudocode for relief-based algorithm.
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5.4 � EXPERIMENTATION

5.4.1 �E xperimental Setup and Data Acquisition

Experiments are conducted on a bearing setup, as shown in Figure 5.4. Vibration 
signals are captured from the bearing setup using a uniaxial accelerometer from 
PCB piezotronics with a sensitivity of 100 mV/g. The data acquisition system uti-
lized for data collection is a 24-bit, 4-channel model from National Instruments. 
The accelerometer is secured to the bearing casing with wax and positioned per-
pendicular to the shaft’s axis of rotation, enabling the capture of vertical accel-
eration at a sampling rate of 70 kHz. The taper roller bearing-2, designated as 
bearing number NBC 30205, is used to examine the seeded groove defect in (i) 
the outer race only, (ii) the inner race only, and (iii) a combination of both races, 

FIGURE 5.3  Flow chart for the proposed algorithm.
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utilizing vibration signals. The groove widths for the outer and inner races are 
0.5776 mm and 0.4714 mm, respectively, as illustrated in Figure 5.5. The analysis 
is performed for a signal length of 0.1 seconds, incorporating 7000 data points 
for each operating condition. The raw signal obtained from the bearing test rig is 
processed using the SWD method. PE is calculated for the decomposed modes 
generated by SWD, with the mode exhibiting the lowest entropy selected as the 
dominant mode.

Initially, the accelerometer gathers vibration data from the bearing test rig oper-
ating at a speed of 2050 rpm (equivalent to a frequency of 34.16 Hz) under healthy 
(defect-free) conditions. The test rig is maintained at a constant operating speed 

FIGURE 5.4  (a) Schematic of test rig. (b) Experimental test rig.
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throughout all experiments conducted in this study. The raw signal in the time 
domain for the defect-free bearing condition is illustrated in Figure 5.6(a). This raw 
signal is processed using SWD, which decomposes it into various modes. The 
parameters that must be predetermined for SWD include the threshold for peak 
selection thP  and the termination threshold thStD , which halts the SWD process. 
The SWD parameters are configured as = 0.2thP  and = 0.2.thStD  The various 
modes are depicted in Figure 5.6(b). PE is calculated for each mode, with the first 
mode yielding the lowest PE value of 1.69, making it the choice for feature extrac-
tion. A total of 50 signals are analyzed under conditions of healthy (defect-free), 
outer race defect, inner race defect, and a combination of both outer and inner race 
defects.

Similarly, the data is collected under conditions simulating an outer race defect 
and then decomposed into various modes using SWD, resulting in four modes 
with = 0.2thP  and = 0.2.thStD  The PE values for these four modes are 1.96, 3.02, 
4.21, and 4.32. The first mode, exhibiting the lowest PE, has been chosen for fur-
ther analysis. The time-domain signal and the decomposed modes are illustrated 
in Figure 5.7(a) and (b), respectively.

The raw signal associated with the inner race defect condition is shown in 
Figure 5.8(a). With thP  set to 0.2 and thStD  at 0.2, the raw signal is decomposed 
into four modes, as illustrated in Figure 5.8(b). The PE values for the first, second, 
third, and fourth modes are 2.14, 2.79, 3.04, and 4.31, respectively. Since the first 
mode exhibits the lowest PE, it has been selected for further analysis.

The time-domain signal indicating the simultaneous occurrence of both outer-
race and inner-race defect conditions is shown in Figure 5.9(a). Following the 
same procedure as in previous cases, the raw signal is decomposed into several 
modes using the SWD parameters set to thP  = 0.2 and thStD  = 0.2. The resulting 
four modes are illustrated in Figure 5.9(b). The PE values for the first, second, 
third, and fourth modes are 2.21, 3.01, 3.89, and 4.59, respectively. The mode 
with a PE of 2.21 has been identified as the dominant mode.

FIGURE 5.5  Different operating conditions: (a) outer race defect and (b) inner race defect.



Fault Diagnosis of Bearing� 145

5.4.2 �F eature Extraction

A total of 200 prominent modes of vibration signals are obtained from the SWD 
method, with 50 modes corresponding to each condition: healthy (defect-free), 
outer race defect, inner race defect, and a combination of outer and inner race 
defects, utilizing PE as the measurement index. The mode with the lowest PE value 
is regarded as the dominant mode for further analysis. Following this, 15 features 

FIGURE 5.6  Vibration signal under healthy condition. (a) Raw signal and (b) different 
modes obtained through SWD.
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are extracted from the prominent modes of the decomposed SWD. A list of these 
features along with their definitions is presented in Table 5.1. The extracted fea-
tures are normalized within the range of [0,1] using the following mathematical 
expression:

	

−=
−

min

max min
Normalized

Feat Feat
Feat

Feat Feat 	
(5.35)

FIGURE 5.7  Vibration signal under outer race defect condition. (a) Raw signal and (b) 
different modes obtained through SWD.
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where minFeat  denotes the minimum value of a feature, while maxFeat  represents 
the maximum value of that feature.

In this context, x denotes the data, N  represents the length of the data (i.e., the 
number of samples), and ( )kx n  indicates the decomposition coefficient for the kth 
sequence. The variable j corresponds to the level of wavelet packet decomposition 
(WPD) decomposition, while ( )s k  signifies the spectrum of the signal x, and K  
represents the number of lines.

Fifteen features are extracted from the decomposed signal using SWD, cover-
ing both the time and frequency domains. To reduce data redundancy and 

FIGURE 5.8  Vibration signal under inner race defect condition. (a) Raw signal and (b) 
different modes obtained through SWD.
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determine which feature contributes the most, a filter-based feature selection 
method, that is, relief-based algorithm (RA) is utilized. This filter-based technique 
employs statistical measures to calculate a score for each feature, ranking them 
according to these scores. The scores for each feature are presented in Figure 5.10, 
while the ranks assigned to each feature are displayed in Figure 5.11. From these 
figures, it is clear that the RMS is the most important feature among the fifteen, as 
it holds the top rank, while the statistical parameter peak is in the second position.

FIGURE 5.9  Vibration signal under combined outer race and inner race defect condition. 
(a) Raw signal and (b) different modes obtained through SWD.
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5.4.3 �F itness Evaluation

Based on the ranking of the prominent features, a dataset is constructed. This dataset 
is subsequently fed into the ELM, which classifies the different fault conditions. 
Within the ELM, two parameters need optimization: the input connection weight 
and the hidden biases of the single hidden layer feedforward network. These param-
eters are optimized using the opposition-based SMA. The optimized ELM classi-
fication method is then employed to compute the error, as expressed in Eq. (5.36).

	 ( )= minf error 	 (5.36)

where error is defined as −1 ,Accuracy  where Accuracy represents the proportion 
of samples that are correctly classified out of the total number of samples in the 
training set.

FIGURE 5.10  Weight (score) of each feature.

FIGURE 5.11  The rank assigned to features; Nf indicates the total number of features.
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TABLE 5.1
Definition of Features

S. No. Features Name Features Definition

1
Wavelet Packet Decomposition (WPD) Energy ( ) ( )

−

= = =

=∑ ∑∑
2 1

2 2

1 0 1

/

jN N

i i k

n k n

WPD x n x n

2 Standard Deviation ( )stdx ( )( )
=

= −∑ 2

1

/
N

std m

i

x x i x N

3 Kurtosis ( )kurx ( )( )
=

= −∑ 4
4

1

/
N

kur m std

i

x x i x Nx

4 Skewness ( )skex ( )( )
=

= −∑ 3

1

/
N

ske m

i

x x i x N

5 Average ( )avgx
( )

==
∑ 1

N

i
avg

x i
x

N

6 Root Mean Square ( )rmsx ( )
=

= ∑ 2

1

/
N

rms

i

x x i N

7 Variance ( )varx
( )( )

=
−

=
−

∑ 2

1
var

1

N

avg
i

x i x
x

N

8 Maximum ( )maxx ( )( )=max maxx x i

9 Peak ( )px ( )= maxpx x i

10 Peak Factor (PF) = p

rms

x
PF x

11 Shape Factor (SF) ( )
=

 
 =
 
 
∑

1

/
N

rms

i

SF x x i N

12 Impulse Factor (IF) ( )
=

 
 =
 
 
∑

1

/
N

p

i

IF x x i N

13 Spectral Average
( )
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∑ 1

K

k
s k
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K

14 Spectral Variance
( )

=

 − 
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15 Spectral Kurtosis
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( ) ( )
= ==

∑ ∑1 1
, ,

N C

i j
f i j C i j

Accuracy
N 	

(5.37)

where C  denotes the labels of the dataset and N  represents the number of samples 
in the training set. ( ),C i j  is equal to 1 if the predicted class of sample i is j ; other-
wise, it is 0. The function ( ),f i j  serves as a flag, indicating 1 if sample i belongs 
to class .j

The sensitivity, specificity, and precision are also assessed for identifying bear-
ing defects using the optimized ELM. The mathematical expressions for sensitiv-
ity, specificity, and precision are provided in Equations (5.38), (5.39), and (5.40), 
respectively.

	 ( )
=

+
TP

Sensitivity
TP FN 	

(5.38)

	 ( )
=

+
TN

Specificity
FP TN 	

(5.39)

	 ( )
=

+
TP

Precison
TP FP 	

(5.40)

where TP  indicates true positive, TN  is true negative, FP  is false positive, and FN  
represents false negative.

5.5 � RESULTS AND DISCUSSION

5.5.1 �P urpose to Optimize ELM Parameters

ELM is a neural network designed for training models in classification and regres-
sion tasks. In ELM, the input weights (which connect the input layer to the output 
layer) and the biases of the hidden neurons are selected randomly. This random-
ness can lead to longer computation times for training the model and lower classi-
fication accuracy. Therefore, the optimal selection of these parameters is essential 
to address these issues and achieve an efficient ELM model. The outcomes of rec-
ognition using arbitrary values for input weights and biases are shown in Table 5.2.

Table 5.2 shows that the arbitrary selection of input weights and biases affects 
performance parameters (such as accuracy, sensitivity, specificity, and precision) 
and leads to suboptimal outcomes. As a result, the opposition-based SMA is uti-
lized to optimize the parameters of the ELM. For this application, a population 
size of 30 is employed, with the maximum number of iterations set to 10, serving 
as the stopping criterion for this problem. The optimal classification error during 
training is achieved as zero in the second iteration, as shown in Figure 5.12, indi-
cating a training accuracy of 100%. The time taken by the opposition-based SMA 
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TABLE 5.2
Effectiveness of ELM for Arbitrary Values of Input Weight and Biases

S. No. Input Weight Biases Accuracy (%) Sensitivity (%) Specificity (%) Precision(%)

Training Testing Training Testing Training Testing Training Testing

1 3.5624 159.7268 92.67% 89.04% 90.92% 92.02% 85.58% 88.82% 88.71% 89.27%

2 4.9283 456.2948 85.65% 78.72% 85.25% 80.56% 80.98% 87.65% 83.59% 87.54%

3 11.6578 358.78 90.85% 80.29% 80.59% 87.15% 82.76% 85.29% 86.82% 82.47%

4 2.8954 571.1072 88.60% 85.75% 79.35% 88.52% 81.59% 80.62% 90.39% 88.82%
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to optimize the ELM parameters is 0.0023 seconds. The optimized values for the 
input weights and biases in the hidden layers are determined to be 0.0789 and 500, 
respectively. With this combination of input weights and biases, the sensitivity, 
specificity, and precision are calculated to be 100%, 98.95%, and 100%, respec-
tively. Additionally, a confusion matrix is constructed at this input weight (0.0789) 
and biases (500) in the hidden layers of ELM, reflecting various classes of bearing 
faults, including those with only outer race defects, only inner race defects, and 
both outer and inner race defects concurrently. The confusion matrix, presented in 
Figure 5.13, further validates the robustness of the proposed identification 
approach.

5.5.2 �R esults of the Fault Identification Scheme and 
Its Comparison with Other Classifiers

The results from the ELM model are compared to those obtained from k-nearest 
neighbors (KNN), SVM, decision tree, and random forest classification models. 
The classification is performed for features both with and without ranking, and 
these findings are summarized in Table 5.3. As shown in Table 5.3, ELM surpasses 
other classifiers, achieving an accuracy of 100%. In contrast, KNN achieves an 
accuracy of 77.50%, SVM reaches 87.50%, the decision tree computes 83%, and 
the random forest achieves an accuracy of 86% for the provided data.

The accuracy of the proposed opposition-based SMA algorithm combined 
with the ELM classifier in identifying faults for each defect case is presented in 
Figure 5.14. A comparison with various classifiers (KNN, SVM, decision tree, 
and random forest) is also included in the same figure. The notations ND, OR, 
IR, and OR&IR in the figure represent no defect, outer race defect, inner race 
defect, and a combination of both outer and inner race defects, respectively. It is 
evident from this representation that the ELM classifier achieves the best perfor-
mance when integrated with the proposed opposition-based SMA algorithm 

FIGURE 5.12  Convergence behavior for simple SMA and opposition-based SMA.
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across all health conditions. Additionally, it has been noted that specific defect 
types can be identified by inputting the data from any health condition into the 
trained ELM model. The defect identification accuracy for each health condition 
is presented in Figure 5.14.

To showcase the effectiveness of the algorithm, various optimization methods—
including the Ant Lion Optimizer (ALO), Sine-Cosine Algorithm (SCA), Salp 
Swarm Algorithm (SSA), Grey Wolf Optimization (GWO), and opposition-based 
PSO—are compared with the proposed opposition-based SMA during the optimi-
zation of ELM parameters. The results, evaluated based on accuracy, are displayed 
in Figure 5.15. The proposed opposition-based SMA achieves the highest accu-
racy of 100% when optimizing the ELM parameters.

To evaluate the appropriateness of the basis chosen for identifying the domi-
nant mode from the different decomposed modes of SWD, a comparison is made 

FIGURE 5.13  Confusion matrix showing recognition performance of the optimized ELM.
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among several entropies, including Shannon Entropy (SE), Sample Entropy 
(Sp.E), Corrected Conditional Entropy (CCE), Wavelet Energy (WE), and 
Multiscale PE (MPE) against PE. The results of this comparison are illustrated in 
Figure 5.16. PE demonstrates superior performance compared to the other mea-
surement indices, thereby establishing it as the basis for selecting the promi-
nent mode. 

TABLE 5.3
Comparison of Results of Different Classification Methods

S. 
No.

Classification 
Method

Without Feature Ranking With Feature Ranking

Testing 
Accuracy %

Training 
Accuracy %

Testing 
Accuracy %

Training 
Accuracy %

1. KNN 76.00 - 77.50 -

2. SVM 85.00 - 87.50 -

3. Decision tree 80% - 83% -

4. Random forest 82% - 86% -
5. Proposed method 

(ELM)
97.65 98.50 100 100

FIGURE 5.14  Defect identification accuracy of the algorithm with different classifiers.
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FIGURE 5.15  Accuracy in results with different optimization algorithms.

FIGURE 5.16  Comparison of different entropies for selecting prominent mode after 
decomposition in terms of defect identification accuracy.
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5.6 � CONCLUSION 

The ELM model has been created to identify defects in taper roller bearings. In the 
signal processing stage, the raw vibration signal acquired from the bearing system 
is broken down into several modes using SWD. The mode with the lowest PE is 
selected as the dominant mode. Fault features are identified and prioritized using 
a filter-based RA. An opposition-based SMA, inspired by nature, is introduced 
to optimize the parameters of the ELM and to build the classification model. The 
performance of the developed classifier is evaluated using a fitness function.

The proposed method for identifying bearing defects has been evaluated 
against other training methods in terms of training accuracy for both ranked and 
unranked features. It was shown that the overall recognition rate reached 100%, 
with testing accuracy also recorded at 100%. The experimental outcomes suggest 
that the proposed approach can effectively identify bearing defects automatically. 
Furthermore, the fault identification method has been assessed against a variety of 
signal processing techniques, measurement indices, optimization algorithms, and 
classifiers to confirm each phase of the process. The proposed fault identification 
algorithm surpassed all comparisons in terms of accuracy, computational effi-
ciency, sensitivity, specificity, and precision. The results and analysis from this 
study underscore the benefits of the opposition-based SMA in improving the per-
formance of ELM. This methodology holds considerable promise for use in pre-
dictive maintenance within various industrial sectors.
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The Future of Machine 
Learning in Fault 
Diagnosis

6.1 � INTRODUCTION

Fault diagnosis, the process of identifying and isolating malfunctions within a sys-
tem, is crucial across numerous industries, from manufacturing and aerospace to 
healthcare and energy. Conventional methods for fault diagnosis typically depend 
on the expertise of professionals, rule-driven systems, and models based on physi-
cal principles. However, these approaches can be time-consuming, expensive, and 
limited in their ability to handle complex systems with high dimensionality and 
noisy data. The advent of machine learning (ML) has revolutionized fault diagno-
sis, offering powerful tools to analyze vast datasets, identify subtle patterns, and 
predict failures with greater accuracy and efficiency. This chapter investigates the 
prospects of ML in fault diagnosis, analyzing present trends, new technologies on 
the horizon, and possible obstacles.

6.2 � CURRENT LANDSCAPE OF ML IN FAULT DIAGNOSIS

Several ML techniques have proven effective in fault diagnosis applications. 
These include the following sections.

6.2.1 � Supervised Learning

This method entails training a model using labeled data, where each instance is 
linked to a specific fault type. Popular algorithms for this task include support 
vector machines (SVMs), k-nearest neighbors (KNN), and different varieties of 
neural networks such as multilayer perceptrons (MLPs), Convolutional neural 
networks (CNNs), and recurrent neural networks (RNNs). Supervised learning 
is particularly effective when there is an ample supply of labeled data; however, 
acquiring this data can be costly and labor intensive.

6.2.2 �U nsupervised Learning

In situations where labeled data is limited or not accessible, unsupervised learn-
ing methods such as clustering (including k-means and density-based spatial 
clustering of applications with noise (DBSCAN)) and dimensionality reduction 
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techniques (such as Principal Component Analysis (PCA) and t-distributed 
Stochastic Neighbor Embedding (t-SNE)) can be used. These approaches focus 
on uncovering underlying structures and patterns within the data, which can 
highlight potential anomalies that suggest faults. Nonetheless, interpreting the 
outcomes can be difficult, and pinpointing specific fault types may necessitate 
additional analysis.

6.2.3 � Semi-Supervised Learning

This method integrates both labeled and unlabeled data to boost the effectiveness 
of models trained with a small amount of labeled data. Semi-supervised learning 
methods utilize the insights present in the unlabeled data to improve the model’s 
ability to generalize.

6.2.4 �R einforcement Learning (RL)

Reinforcement learning (RL) is gaining traction in the area of fault diagnosis, 
particularly within dynamic systems. An RL agent acquires knowledge by engag-
ing with the system, making decisions based on its observations, and receiving 
rewards or penalties according to how well it identifies and addresses faults. This 
method holds significant potential for adaptive fault diagnosis in intricate, chang-
ing environments.

6.3 � EMERGING TRENDS AND TECHNOLOGIES

The field of ML in fault diagnosis is constantly evolving, with several exciting 
trends and technologies shaping its future.

6.3.1 �D eep Learning

Deep learning models, especially deep neural networks (DNNs), have shown 
remarkable effectiveness in tackling intricate fault diagnosis challenges. CNNs 
are particularly adept at managing image data from devices like cameras and 
scanners, whereas RNNs are ideal for examining sequential data from time-series 
sensors. Recent progress in deep learning, including generative adversarial net-
works (GANs) and transformers, is also being utilized in fault diagnosis. GANs 
can produce synthetic data to enhance limited datasets, while transformers excel 
at managing long-range dependencies in sequential information.

6.3.2 �T ransfer Learning

Transfer learning refers to using insights gained from addressing one issue to 
enhance performance on a similar task. This approach is particularly useful in fault 
diagnosis when there is insufficient data for a specific system or fault category. 
By initially training a model on a substantial, relevant dataset and subsequently 
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refining it on the target dataset, the model can attain improved performance with 
reduced amounts of training data.

6.3.3 �E xplainable AI (XAI)

A key challenge associated with ML models, especially deep learning ones, is 
their “black box” characteristic. Understanding how these models generate their 
predictions can be challenging, which makes it difficult to have confidence in 
their decisions for critical applications like fault diagnosis. XAI techniques are 
designed to enhance the transparency and interpretability of ML models, facilitat-
ing a better understanding of the reasoning behind their predictions. This greater 
transparency is essential for fostering trust and acceptance of ML-based fault 
diagnosis systems.

6.3.4 �F ederated Learning

Federated learning enables various parties to jointly develop a common ML 
model without the need to share their data directly. This approach is especially 
applicable in fault diagnosis situations where data may be spread across different 
entities or remote locations due to concerns about privacy or issues related to data 
ownership.

6.3.5 � Hybrid Approaches

Integrating ML with conventional techniques, such as physics-based models and 
expert insights, can result in more dependable and effective fault diagnosis sys-
tems. Hybrid methodologies take advantage of the benefits of both ML and tra-
ditional approaches, overcoming weaknesses and improving performance. For 
instance, a physics-based model could deliver preliminary estimates, which are 
then fine-tuned by a ML model utilizing sensor data.

6.3.6 �I oT and Edge Computing

The growing implementation of the Internet of Things (IoT) and edge comput-
ing is revolutionizing fault diagnosis. IoT devices produce large quantities of 
data from sensors integrated into diverse systems, offering valuable insights for 
ML models. Edge computing enables real-time data processing nearer to the 
source, minimizing latency and bandwidth needs. This supports quicker fault 
identification and response, which is essential in applications where timing is 
critical.

6.4 � CHALLENGES AND FUTURE DIRECTIONS

Despite the significant progress, several challenges remain in the application of 
ML to fault diagnosis.
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6.4.1 �D ata Scarcity and Quality

Obtaining sufficient high-quality labeled data for training ML models can be chal-
lenging and expensive, especially for rare or infrequent fault events. Data aug-
mentation techniques, synthetic data generation, and transfer learning can help 
mitigate this issue.

6.4.2 �D ata Heterogeneity and Noise

Real-world datasets frequently include noise, incomplete data, and discrepancies, 
which can impact the effectiveness of ML models. Employing effective data pre-
processing and feature engineering methods is essential to tackle these issues.

6.4.3 �M odel Interpretability and Explainability

The lack of transparency in some ML models makes it difficult to understand their 
predictions, hindering trust and acceptance. XAI methods are essential for address-
ing this issue and improving confidence in ML-based fault diagnosis systems.

6.4.4 �G eneralization and Robustness

ML models trained on one dataset might not generalize well to other datasets or 
operating conditions. Developing robust and generalizable models is crucial for 
reliable fault diagnosis across various scenarios.

6.4.5 �R eal-Time Performance and Scalability

For some applications, real-time fault detection and diagnosis are essential. 
Developing ML models that can operate efficiently and scale to handle large data-
sets in real time is a critical challenge.

6.4.6 � Security and Safety

Implementing ML models in essential systems demands thorough attention to 
safety and security factors. It is crucial to guarantee the strength and dependability 
of these models to avoid unexpected outcomes.

6.5 � SPECIFIC APPLICATION AREAS AND FUTURE OUTLOOK

The future of ML in fault diagnosis holds immense potential across various domains.

6.5.1 �M anufacturing

ML has the potential to transform predictive maintenance, minimizing downtime 
and enhancing efficiency in manufacturing operations. By examining sensor data 
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from equipment, ML models can forecast possible failures and arrange mainte-
nance in advance.

6.5.2 �A erospace

In aerospace contexts, diagnosing faults is essential for maintaining safety and 
reliability. ML can enhance the precision and speed of fault identification in air-
craft and spacecraft systems, which may help avert disastrous failures.

6.5.3 � Healthcare

ML has the potential to improve medical diagnosis by examining medical images, 
patient information, and other pertinent data. This advancement can result in 
quicker and more precise disease identification, ultimately benefiting patient 
outcomes.

6.5.4 �E nergy

ML can enhance the effectiveness and dependability of power grids and various 
energy systems by identifying and diagnosing faults in real time. This capability 
can aid in preventing power outages and optimizing energy management.

6.5.5 �A utomotive

Self-driving cars depend significantly on effective fault diagnosis mechanisms to 
guarantee safety and dependability. ML can enhance the precision and rapidity 
of fault detection in autonomous driving technologies, reducing the likelihood of 
accidents and boosting overall efficiency.

6.6 � CONCLUSION

ML is revolutionizing fault diagnosis in a variety of industries by providing 
robust tools that enhance accuracy, efficiency, and reliability. New trends such 
as deep learning, transfer learning, XAI, federated learning, and hybrid meth-
ods are further augmenting the capabilities of ML-based fault diagnosis systems. 
Nevertheless, issues related to data limitation, diversity, model transparency, and 
real-time performance must be tackled to fully harness the potential of ML in this 
area. Current research and development initiatives are aimed at addressing these 
challenges and broadening the use of ML in increasingly complex and critical 
systems. The future of fault diagnosis is closely linked to the advancements in 
ML, resulting in safer, more efficient, and more dependable systems across vari-
ous sectors. Ongoing partnerships between researchers, engineers, and industry 
professionals will be crucial for advancing this swiftly developing field.
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